Composing Complex Skills by Learning Transition Policies

Youngwoon Lee*, Shao-Hua Sun*, Sriram Somasundaram, Edward S. Hu, Joseph J. Lim Presented in ICLR 2019

Reusable Skills

$\pi_{ ext{walk}}$

$\pi_{ ext{crawl}}$

$\pi_{ ext{walk}}$ $\pi_{ ext{jump}}$ $\pi_{ ext{walk}}$

Twalk Π Image: Walk Image: Comparison of the two sets of two sets

$\pi_{ ext{walk}}$

$\pi_{ ext{crawl}}$ $\pi_{ ext{walk}}$ $\pi_{ ext{jump}}$ $\pi_{ ext{walk}}$

Fail since these skills never learned to connect

$\pi_{ ext{jump}}$

 π_{wak}

π_{pick}

Obstacle course

Repetitive pick

$\pi_{ ext{walk}}$

π_{pick}

Obstacle course

Repetitive pick

$\pi_{ ext{walk}}$

π_{pick}

π_{pick}

Obstacle course

Repetitive pick

Transition policy

 $\pi_{ ext{walk}}$

Transition policy

 π_{pick}

π_{pick}

Obstacle course

Repetitive pick

Transition policy

→

Transition policy

Smoothly connect skills

$\pi_{ ext{crawl}}$

π_{pick}

Obstacle course

Repetitive pick

Transition policy

Transition policy

Model

eta	ро	licy
-----	----	------

Valking	Crawling

Model

leta policy		
Valking	Crawling	

eta policy	
/alking	Crawling
$\pi_{ ext{jump}}$	

Repeat until reach a good initial state

eta policy	
/alking	Crawling
$\pi_{ ext{jump}}$	

Repeat until reach a good initial state

eta policy	
	-
Valking	Crawling
π jum	р

Model

How do we train a transition policy? What is reward for learning a transition policy?

Alking Crawling

 $oldsymbol{\pi}$ jump

Model

eta policy

How do we train a transition policy? What is reward for learning a transition policy?

/alking Crawling

- Success of the following skill

 $\pi_{ ext{jump}}$

Bad initial states for π_{walk}

Bad initial states for π_{walk}

Good initial states for π_{walk}

Good initial states for π_{walk}

Successful execution of the following skill: +1

Good initial states for π_{walk}

Successful execution of the following skill: +1 Failing execution of the following skill: 0

Good initial states for π_{walk}

Successful execution of the following skill: +1 Failing execution of the following skill: 0

Good initial states for π_{walk}

Successful execution of the following skill: +1 Failing execution of the following skill: 0

Bad initial states for π_{walk}

Instead of binary reward

Good initial states for π_{walk}

Bad initial states for π_{walk}

Good initial states for π_{walk}

Bad initial states for π_{walk}

We define *proximity* as: $P(s) = \delta^{step}$

Good initial states for π_{walk}

Bad initial states for π_{walk}

We define *proximity* as: $P(s) = \delta^{step}$

Good initial states for π_{walk}

Bad initial states for π_{walk}

We define *proximity* as: $P(s) = \delta^{step}$

and provide *proximity reward* every step: $P(s_{t+1}) - P(s_t)$

Good initial states for π_{walk}

(s, P(s))	Jumping
<i>S</i>	

(s, P(s))	Jumping	
<i>S</i>		

Collect training data for proximity predictors

(s, P(s))	Jumping	
<i>S</i>		

Collect training data for proximity predictors

(s, P(s))	Jumping	
<i>S</i>		

Collect training data for proximity predictors

Train proximity predictors

Train proximity predictors

Tr

Provide more accurate proximity reward

Getter better data with improved policy

Train all transition policies simultaneously

Train all transition policies simultaneously

Obstacle Course

Crawl

Transition

Walk

Obstacle Course

Obstacle Course

Walk Forward & Backward

Walk Forward & Backward

Walk Forward & Backward

Repetitive Pick

Repetitive Pick

Repetitive Pick

Toss & Hit

Transition

Hit

Toss & Hit

Toss & Hit

Quantitative Results

(d) Patrol

(e) Hurdle

Quantitative Results

	Reward	Repetitive picking up	Repetitive catching	Serve
TRPO	dense	0.69 ± 0.46	4.54 ± 1.21	0.32 ± 0.47
PPO	dense	0.95 ± 0.53	4.26 ± 1.63	0.00 ± 0.00
Without TP	sparse	0.99 ± 0.08	1.00 ± 0.00	0.11 ± 0.32
TP-Task	sparse	0.99 ± 0.08	4.87 ± 0.58	0.05 ± 0.21
TP-Sparse	sparse	1.52 ± 1.12	4.88 ± 0.59	$\textbf{0.92} \pm \textbf{0.27}$
TP-Dense (ours)	sparse	$\textbf{4.84} \pm \textbf{0.63}$	$\textbf{4.97} \pm \textbf{0.33}$	$\textbf{0.92} \pm \textbf{0.27}$

	Reward	Patrol	Hurdle	Obstacle course
TRPO	dense	1.37 ± 0.52	$\textbf{4.13} \pm \textbf{1.54}$	0.98 ± 1.09
PPO	dense	1.53 ± 0.53	2.87 ± 1.92	0.85 ± 1.07
Without TP	sparse	1.02 ± 0.14	0.49 ± 0.75	0.72 ± 0.72
TP-Task	sparse	1.69 ± 0.63	1.73 ± 1.28	1.08 ± 0.78
TP-Sparse	sparse	2.51 ± 1.26	1.47 ± 1.53	1.32 ± 0.99
TP-Dense (Ours)	sparse	$\textbf{3.33} \pm \textbf{1.38}$	$\textbf{3.14} \pm \textbf{1.69*}$	$\textbf{1.90} \pm \textbf{1.45}$

Manipulation

Locomotion

Transition Trajectories

Summary

We propose to reuse skills to compose complex, long-horizon tasks.

Naive execution of skills fail since the skills never learned to connect.

Transition policies learn to smoothly connect skills.

Proximity predictors provide dense reward for efficient training of transition policies.

Composing Complex Skills by Learning Transition Policies, ICLR 2019

