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Fall since these skills never learned to connect
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Need to bring an agent
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How do we train a transition policy?
What is reward for learning a transition policy®?

- Success of the following skill
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Successful execution of the following skill: +1
Falling execution of the following skill: O

Reward Is binary and sparse!

We want dense reward for easier policy training.

Bad initial states for mwwak Good initial states for mwak



Proximity Reward

Instead of binary reward

Bad initial states for mwai Good initial states for mwak



Proximity Reward

Instead of binary reward, use “proximity prediction”,
which estimates how close to good Initial states

Bad initial states for mwai Good initial states for mwak



Proximity Reward

Instead of binary reward, use “proximity prediction”,
which estimates how close to good Initial states

Bad initial states for mwai Good initial states for mwak

We define proximity as: P(s) = 6°'"



Proximity Reward

Instead of binary reward, use “proximity prediction”,
which estimates how close to good Initial states

Bad initial states for mwai Good initial states for mwak

We define proximity as: P(s) = 6°'"



Proximity Reward

Instead of binary reward, use “proximity prediction”,
which estimates how close to good Initial states

Bad initial states for mwwak Good initial states for mwak

We define proximity as: P(s) = 6°'"
and provide proximity reward every step: P(s,, ) — P(s,)
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Quantitative Results

Manipulation

Reward Repetitive picking up Repetitive catching Serve
TRPO dense 0.69 £ 0.46 4.54 +£1.21 0.32 £0.47
PPO dense 0.95 £0.53 4.26 +£1.63 0.00 £ 0.00
Without TP sparse 0.99 £0.08 1.00 = 0.00 0.11 £0.32
TP-Task sparse 0.99 £ 0.08 4.87 £+ 0.58 0.05 £0.21
TP-Sparse sparse 1.52 £1.12 4.88 = 0.59 0.92 + 0.27
TP-Dense (ours)  sparse 4.84 + 0.63 4.97 + 0.33 0.92 + 0.27
Locomotion
Reward Patrol Hurdle Obstacle course
TRPO dense 1.37+0.52 4.13+1.54 0.98 £+ 1.09
PPO dense 153 +£0.53 287+ 192 0.85 = 1.07
Without TP sparse  1.02 £0.14 049 £ 0.75 0.72 £ 0.72
TP-Task sparse  1.69+0.63 1.73 = 1.28 1.08 + 0.78
TP-Sparse sparse 251 +1.26 147+ 1.53 1.32 £+ 0.99
TP-Dense (Ours) sparse 3.33 +1.38 3.14 £+ 1.69% 1.90 + 1.45
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Summary

We propose to reuse skills to compose complex, long-horizon tasks.
Naive execution of skills fail since the skills never learned to connect.
Transition policies learn to smoothly connect skills.

Proximity predictors provide dense reward for efficient training of transition policies.
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