
Program Guided Agent
ICLR 2020 (Spotlight)

Shao-Hua Sun Te-Lin Wu Joseph J. Lim

waltersun

Follow an Instruction to Solve a Complex Task

Recipe: cooking fried rice
Stir-fry the onions until tender,
and repeat this for garlic and
carrots, if you have soy sauce,
add some. Pour 2/3 cups the
whisked eggs into the stir-fried
and scramble.

Natural Language Instruction

• Scoping
• Coreferences
• Entities

Recipe: cooking fried rice
Stir-fry the onions until tender,
and repeat this for garlic and
carrots, if you have soy sauce,
add some. Pour 2/3 cups the
whisked eggs into the stir-fried
and scramble.

Ambiguities in Language

Bandanau et al. in ICLR 2019
Misra et al. “Mapping Instructions to Actions in 3D Environments with Visual Goal Prediction” in EMNLP 2018
Anderson et al. “Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments” in CVPR 2018
Misra et al. “Mapping Instructions and Visual Observations to Actions with Reinforcement Learning” in EMNLP 2017
Hermann et al. “Grounded Language Learning in a Simulated 3D World” in arXiv 2017

https://arxiv.org/abs/1806.01946

Program

Function: cooking fried rice
for item in [onions, garlic, carrots]:
 if is_there(“soy sauce”):
 add(“soy sauce”, “pot”)
 while not tender(item):
 stir_fry(item)
pour(whisked(“eggs”), “pot”, 0.66)
scramble(“eggs”)

• Explicit scoping
• Resolved Coreferences
• Resolved Entities

Advantages of Programs

Problem Formulation

Program

Problem Formulation

StateProgram

x3 x1 x0

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x4 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x2 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x0

StateProgram

x3 x1 x0

Execution

Problem Formulation

x3 x1 x1

StateProgram

x3 x1 x0

Execution

Exemplar Instructions

def Task():
if is_there[River]:
mine(Wood)
build_bridge()
if agent[Iron] < 3:
mine(Iron)

place(Iron, 2, 3)
else:
goto(4, 2)

while env[Gold] > 0 :
mine(Gold)

def Task():
if is_there[River]:
build_bridge()

 place(Gold, 3, 4)
 if agent[Gold] = = 1 3:
 while agent[Gold] <= 12:

 place(Gold, 8, 3)
if agent[Iron] >= 8:
 place(Wood, 2, 4)

 elif env[Gold] <= 10:
 sell(Iron)

Programs

Natural Language
Instructions

End-to-end Learning Baseline

Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():
 while env[Gold] > 0:
 mine(Gold)
 if is_there[River]:
 build_bridge()
 place(Wood, 2, 3)

State
3 0 1

Program

State

NL Instruction

OR

Program Guided Agent

Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():
 while env[Gold] > 0:
 mine(Gold)
 if is_there[River]:
 build_bridge()
 place(Wood, 2, 3)

State
3 0 1

Program Interpreter

• Comprehend a given program to 3 categories:
• Subtasks (actions): what agent should perform
• Perception: information from the environment
• Control flow: decide to call different subtasks according to perceived

information

Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():
 while env[Gold] > 0:
 mine(Gold)
 if is_there[River]:
 build_bridge()
 place(Wood, 2, 3)

State
3 0 1

Perception Module

• Extract environmental information for choosing a path in a program
• Input

• Query: a symbolically represented query (e.g. is_there[River])
• State s: environment map and agent inventory status

• Output
• Predicted answer to the query (e.g. True/False)

Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():
 while env[Gold] > 0:
 mine(Gold)
 if is_there[River]:
 build_bridge()
 place(Wood, 2, 3)

State
3 0 1

Policy

• Take low-level actions an the environment for fulfilling a subtask
• Input

• Symbolically represented subtask (goal) g
• State s

• Output
• Predicted action distribution

Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():
 while env[Gold] > 0:
 mine(Gold)
 if is_there[River]:
 build_bridge()
 place(Wood, 2, 3)

State
3 0 1

Result

Conclusion
• Specific tasks using programs

• Leverage the structure of programs with a modular framework

def Task():
if is_there[River]:
mine(Wood)
build_bridge()
if agent[Iron] < 3:
mine(Iron)

place(Iron, 2, 3)
else:
goto(4, 2)

while env[Gold] > 0 :
mine(Gold)

Program

Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():
 while env[Gold] > 0:
 mine(Gold)
 if is_there[River]:
 build_bridge()
 place(Wood, 2, 3)

State
3 0 1

Program Guided Agent
ICLR 2020 (Spotlight)

Shao-Hua Sun Te-Lin Wu Joseph J. Lim

Thank You
for Your Attention

