Generalizable Imitation Learning from Observation via Inferring Goal Proximity

Youngwoon Lee*, Andrew Szot*, Shao-Hua Sun, Joseph J. Lim
Assemble table

https://www.youtube.com/watch?v=_valw8m2zM
Assemble table

Make progress towards goal
How to put it together?

Assemble new table

https://www.youtube.com/watch?v=4620X342yGo
Assemble new table

Make progress to an assembled table

https://www.youtube.com/watch?v=4620X342yGo
Simple but generalizable imitation of demonstrations:

(1) understand underlying task structure, task progress

(2) learn to make progress
Goal Proximity — Task Progress

“How close a state is to the goal?”

Number of actions required to complete the task

4 steps 3 steps 2 steps 1 step 0 step

Low goal proximity High goal proximity
Learning Goal Proximity Function

Expert Demonstrations

Label with Goal Proximity

δ^{-step} or $\delta(H - step)$
Learning Goal Proximity Function

Expert Demonstrations

Label with Goal Proximity

\[\delta^{-step} \text{ or } \delta(H - step) \]
Learning Policy

Unseen Trajectories
Learning Policy

Unseen Trajectories

Label with Proximity Function
Learning Policy

Unseen Trajectories

Train Agent

Proximity Reward

\[f_\phi(s_{t+1}) - f_\phi(s_t) \]
Learning Policy

Unseen Trajectories

Train Agent

Proximity Reward

\[f_\phi(s_{t+1}) - f_\phi(s_t) \]

- Move closer to the goal
- Move away from the goal

Label with Proximity Function
Related Work

Prior Work (GAIL)

Expert Trajectory

Agent Trajectory

New starting point

New goal

Our Method

Expert Trajectory

Agent Trajectory

New starting point

New goal
Task: move green cube to red target

Expert Demonstrations

Demo 1

Demo 2

Demo N
Expert Demonstrations

Proximity discounting factor $\delta = 0.95$

- **Demo 1**
 - Images showing steps with proximity values: 0.857375, 0.9025, 0.95, 1.0 (Goal)

- **Demo 2**
 - Images showing steps with proximity values: 0.81450, 0.857375, 0.9025, 0.95, 1.0 (Goal)

- **Demo N**
 - Images showing steps with proximity values: 0.9025, 0.95, 1.0 (Goal)

Exponentially discounted proximity

$\delta^{T_i - t}$

- Proximity discounting factor
- Number of steps until the goal
Expert Demonstrations

- Demo 1
 - 0.7, 0.8, 0.9, 1.0 (Goal)
- Demo 2
 - 0.6, 0.7, 0.8, 0.9, 1.0 (Goal)
- Demo N
 - 0.8, 0.9, 1.0 (Goal)

Learning Proximity Function

\[f_\phi \left(s_{t+1} \right) = \text{Goal Proximity} \]

Learning Policy

\[\pi_\theta \left(s_t \right) = \alpha \]

Joint Training

Proximity Reward:

\[f_\phi(s_{t+1}) - f_\phi(s_t) \]

Agent Experience

- Rollout 1
 - 0.4, 0.3, 0.2, 0.1 (Fail)
- Rollout 2
 - 0.2, 0.3, 0.6, 1.0 (Goal)
- Rollout M
 - 0.5, 0.8, 1.0 (Goal)

Predicted Goal Proximity

\[f_\phi(s_t) \]
Generalization Experiments

Case 1: Demonstrations cover only part of the state space

Case 2: Small expert sampling noise vs. Large agent sampling noise
Navigation — 25% Coverage

No actions

With actions

With reward
Navigation — Different Coverages

100% coverage 75% coverage 50% coverage 25% coverage

Harder Generalization
(a) NAVIGATION 25%
(b) MAZE2D 50%
(c) ANT REACH 0.05 noise
(d) FETCH PICK 1.75x noise
(e) FETCH PUSH 1.75x noise
(f) HAND ROTATE 0.35 noise
Takeaways

• **Goal proximity** is *generalizable, freely available* task information, and effectively guides an agent to imitate demonstrations.

• Our approach jointly learns **goal proximity function** and **policy**.

• Our method outperforms LfO baselines and is comparable to LfD baselines in multiple tasks: navigation, locomotion, and manipulation.
Generalizable Imitation Learning from Observation via Inferring Goal Proximity

Youngwoon Lee*, Andrew Szot*, Shao-Hua Sun, Joseph J. Lim

For more details: clvrai.com/GPIL