

Generalizable Imitation Learning from Observation via Inferring Goal Proximity

Youngwoon Lee*, Andrew Szot*, Shao-Hua Sun, Joseph J. Lim

Assemble new table

Make progress to an assembled table

Simple but generalizable imitation of demonstrations:

- (1) understand underlying task structure, task progress
- (2) learn to make progress

Goal Proximity — Task Progress

"How close a state is to the goal?"

Number of actions required to complete the task

Learning Goal Proximity Function

Expert Demonstrations

Label with Goal Proximity

$$\delta^{-step}$$
 or $\delta(H-step)$

Low Goal Proximity

High Goal Proximity

Learning Goal Proximity Function

Expert Demonstrations

Label with Goal Proximity

Unseen Trajectories

Unseen Trajectories

Label with Proximity Function

Unseen Trajectories

Label with Proximity Function

Train Agent

Proximity Reward

$$f_{\phi}(s_{t+1}) - f_{\phi}(s_t)$$

Unseen Trajectories

Label with Proximity Function

Train Agent

Proximity Reward

$$f_{\phi}(s_{t+1}) - f_{\phi}(s_t)$$

- Move closer to the goal
- Move away from the goal

Related Work

Prior Work (GAIL)

Expert Trajectory

Agent Trajectory

New starting point

Our Method

Expert Trajectory

Agent Trajectory

New starting point

Task: move green cube to red target

Exponentially discounted proximity

Proximity Reward: $f_{\phi}(s_{t+1}) - f_{\phi}(s_t)$

Predicted Goal Proximity $f_{\phi}(s_t)$

Navigation

Fetch Pick

Maze2D

Fetch Push

Ant Reach

Hand Rotate

Generalization Experiments

Case 1: Demonstrations cover only part of the state space

Case 2: Small expert sampling noise vs. Large agent sampling noise

Navigation — 25% Coverage

LfO+reward GoalGAIL

With reward

Navigation — Different Coverages

Harder Generalization

Navigation Task

Learned Proximity Function

Goal

Takeaways

- Goal proximity is generalizable, freely available task information, and effectively guides an agent to imitate demonstrations
- Our approach jointly learns goal proximity function and policy
- Our method outperforms LfO baselines and is comparable to LfD baselines in multiple tasks: navigation, locomotion, and manipulation

Generalizable Imitation Learning from Observation via Inferring Goal Proximity

Youngwoon Lee*, Andrew Szot*, Shao-Hua Sun, Joseph J. Lim

For more details: <u>clvrai.com/GPIL</u>

