

Composing Complex Skills by Learning Transition Policies

Shao-Hua Sun* Sriram Somasundaram Edward S. Hu Joseph J. Lim Youngwoon Lee*

Composing Complex Skills

- Primitive skills can be achieved by hard-coding, RL, and imitation learning
- We can compose a complex skill by sequentially executing primitive skills
- However, an ending state of a primitive skill may not be a good state to initiate the following skill

• A transition policy learns to smoothly connect primitive skills

- Initiation set of π_{walk} Bad initial states for π_{walk} Good initial states for π_{walk} Transition policy execution

Proximity Reward

- A successful execution of a transition policy is defined by success of the following primitive skill
- The success/failure reward is too sparse to train a transition policy
- A proximity predictor learns to predict the proximity of a state to the initiation set $P(s) = \delta^{step(s)}$
- We use the increase of predicted proximity to the initiation set as a dense reward $R_{\text{proximity}}(s_t, s_{t+1}) = P(s_{t+1}) - P(s_t)$

The numbers inside the circles (states) represent transition steps to the initiation set

Modular Framework with Transition Policies

- (1) The meta-policy chooses a primitive policy of index c
- (2) The corresponding transition policy helps initiate the chosen primitive policy
- (3) The primitive policy executes the skill
- (4) A success or failure signal for the primitive skill is produced

Training Transition Policies

Jointly train proximity predictors and transition policies by optimizing the following objectives:

- Train proximity predictors: $L_P(\omega, \mathcal{B}^S, \mathcal{B}^F) = \frac{1}{2} \mathbb{E}_{(s,v) \sim \mathcal{B}^S} [(P_\omega(s) v)^2] + \frac{1}{2} \mathbb{E}_{s \sim \mathcal{B}^F} [P_\omega(s)^2]$
- Train transition policies with proximity reward: $R_{\text{proximity}}(\phi) = \mathbb{E}_{(s_0, s_1, \dots, s_T) \sim \pi_{\phi}} \left[\gamma^T P_{\omega}(s_T) + \sum_{i=0}^{T-1} \gamma^t (P_{\omega}(s_{t+1}) P_{\omega}(s_t)) \right]$

Results

Transition trajectories of "Repetitive picking up" and "Patrol"

Code is available

- Code and videos are available at https://youngwoon.github.io/transition
- Corresponding author: Youngwoon Lee (lee504@usc.edu)