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Our Approach Experiment - Classification

Experiment - Reinforcement Learning


Experiment - Learned Task Embeddings
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Outer loop
• Task Encoder: produce the task embedding 
• MLPs: modulate the task network blocks 

Inner loop
• Task network: fast adapt through gradient updates
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Intuition
• Modulation network: identify task modes and modulate the 

initialization accordingly 
• Task network: further gradient adaptation via MAML steps

Background
Model-Agnostic Meta-Learning [1]

• Meta-learn a parameter initialization 
that can be fine-tuned for new tasks 
in few gradient update steps 

• Inner loop

Model-Agnostic Meta-Learning Objective

• Outer loop

[1] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast 
adaptation of deep networks." in International Conference on Machine Learning 2017
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Real-world task distributions are often multimodal
• Have a rich structure (e.g. multiple modes) 
• Some knowledge can be transferable across modes/tasks 

Model-agnostic meta-learning (MAML) [1]
• Seek a common initialization parameter for all the modes 

An ensemble of MAMLs (Multi-MAML)
• Mode labels are often not available 
• Prevent sharing related knowledge among modes/tasks


