Feedback Adversarial Learning:
Spatial Feedback for Improving Generative Adversarial Networks

Minyoung Huh* Shao-Hua Sun* Ning Zhang

Motivation

Leverage discriminator’s feedback signals to improve samples generated by Generative Adversarial Networks (GANs).

Intuition

Is the discriminator’s feedback useful for improving generated samples?

Toy Experiment

Train a GAN to generate points \((x, y)\) that are indistinguishable from the samples drawn from the underlying true distribution. The generated samples, the discriminator believes is fake, is improved with feedback.

High-dimensional Data

How can we effectively provide feedback signals to high-dimensional data such as images and voxels?

Adaptive Spatial Transform

Goal: allow the generator to attend and fix local regions based on the discriminator’s feedback and its previous generation.

Conditional Normalization

Learn linear layers that predict global scalar affine parameters to modulate feature maps using external information such as class information.

Implements with Feedback

A concurrent work (GauGAN [4]) translates a semantic layout to an image using a similar module: SPatially-Adaptive DEnormalization (SPADE).

References

[1] Vaswani et al., Modulating early visual processing by language, NIPS 2017
[3] Huang et al., Anticipate Style Transfer in Real-Time with Adversarial Instance Normalization, ICCV2017