
Program-Guided Framework for Interpreting and Acquiring Complex Skills with Learning Robots

by

Shao-Hua Sun

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

May 2022

Copyright 2022 Shao-Hua Sun

Table of Contents

List of Tables ix

List of Figures xi

Abstract xv

I Introduction 1

Chapter 1: Introduction 2

1.1 Overview . 2
1.1.1 Program Inference . 4

1.1.1.1 Learning to Synthesize Programs from Demonstrations 4
1.1.1.2 Learning to Synthesize Programs from Reward Functions 5

1.1.2 Primitive Skill Acquisition . 5
1.1.2.1 Meta-Learning & Meta-Reinforcement Learning 6
1.1.2.2 Learning from Demonstrations . 6

1.1.3 Task Execution . 7
1.1.3.1 Learning to Execute Programs . 7
1.1.3.2 Learning to Compose Skills . 7

1.2 Published Works . 8

II Program Inference 11

Chapter 2: Learning to Synthesize Programs from Demonstrations 12

2.1 Introduction . 12
2.2 Related Work . 14
2.3 Problem Overview . 15
2.4 Approach . 17

2.4.1 Model Architecture . 18
2.4.1.1 Demonstration Encoder . 18
2.4.1.2 Summarizer Module . 18
2.4.1.3 Program Decoder . 20

2.4.2 Learning . 20
2.4.3 Multi-task Objective . 21

2.5 Experiments . 22

ii

2.5.1 Evaluation Metric . 23
2.5.2 Evaluation Setting . 24
2.5.3 Baselines . 24
2.5.4 Karel . 25

2.5.4.1 Environment and Dataset . 25
2.5.4.2 Performance Evaluation . 26
2.5.4.3 Effect of Summarizer . 27

2.5.5 ViZDoom . 27
2.5.5.1 Environment and Dataset . 28
2.5.5.2 Performance Evaluation . 28
2.5.5.3 Analysis . 29
2.5.5.4 Debugging the Synthesized Program . 30

2.6 Conclusion . 30
2.7 Appendix . 31

2.7.1 Detailed Network Architectures . 31
2.7.1.1 Demonstration Encoder . 31
2.7.1.2 Summarizer Module . 31
2.7.1.3 Program Decoder . 31

2.7.2 Training Details . 32
2.7.3 One-shot Imitation Learning Baseline . 32
2.7.4 Dataset Details . 33

2.7.4.1 Karel . 33
2.7.4.2 ViZDoom . 34

Chapter 3: Learning to Synthesize Programs from Reward Functions 35

3.1 Introduction . 35
3.2 Related Work . 37
3.3 Problem Formulation . 38
3.4 Approach . 39

3.4.1 Learning a Program Embedding Space . 40
3.4.1.1 Program Reconstruction . 41
3.4.1.2 Program Behavior Reconstruction . 41
3.4.1.3 Latent Behavior Reconstruction . 42

3.4.2 Latent Program Search: Synthesizing a Task-Solving Program 43
3.5 Experiments . 44

3.5.1 Karel Domain . 44
3.5.2 Programs . 45
3.5.3 Ablation Study . 45
3.5.4 Baselines . 48
3.5.5 Results . 49
3.5.6 Generalization . 51
3.5.7 Interpretability . 52

3.6 Discussion . 53
3.7 Appendix . 54

3.7.1 Program Embedding Space Visualizations . 54
3.7.2 Cross Entropy Method Trajectory Visualization . 57
3.7.3 Program Embedding Space Interpolations . 59
3.7.4 Program Evolution . 61

iii

3.7.5 Interpretability: Human Debugging of LEAPS Programs 61
3.7.6 Optimal and Synthesized Programs . 64

3.7.6.1 Program Behavior Reconstruction . 65
3.7.6.2 Karel Environment Tasks . 65

3.7.7 Additional Generalization Experiments . 66
3.7.7.1 Generalization on FourCorner, TopOff, and Harvester 66
3.7.7.2 Generalization to Unseen Configurations 67

3.7.8 Additional Analysis on Experimental Results . 69
3.7.8.1 DRL vs. DRL-abs . 69
3.7.8.2 VIPER Generalization . 70

3.7.9 Detailed Descriptions and Illustrations of Ablations and Baselines 70
3.7.9.1 Ablations . 71
3.7.9.2 Baselines . 72

3.7.10 Program Dataset Generation Details . 74
3.7.11 Karel Task Details . 75

3.7.11.1 StairClimber . 75
3.7.11.2 FourCorner . 77
3.7.11.3 TopOff . 77
3.7.11.4 Maze . 77
3.7.11.5 CleanHouse . 77
3.7.11.6 Harvester . 78

3.7.12 Hyperparameters and Training Details . 78
3.7.12.1 DRL and DRL-abs . 78
3.7.12.2 DRL-abs-t . 80
3.7.12.3 HRL . 81
3.7.12.4 Naïve . 83
3.7.12.5 VIPER . 85
3.7.12.6 Program Embedding Space VAE Model 86
3.7.12.7 Cross-Entropy Method (CEM) . 89
3.7.12.8 Random Search LEAPS Ablation . 91

3.7.13 Computational Resources . 93
3.7.14 Toward Robotics Applications . 94

III Primitive Skill Acquisition 112

Chapter 4: Meta-Learning on Multimodal Task Distributions 113

4.1 Introduction . 113
4.2 Related Work . 115
4.3 Preliminaries . 117
4.4 Method . 118

4.4.1 Modulation Network . 119
4.4.2 Task Network . 120

4.5 Experiments . 120
4.5.1 Regression Experiments . 121
4.5.2 Image Classification . 123
4.5.3 Reinforcement Learning . 125

4.6 Conclusion . 128

iv

4.7 Appendix . 129
4.7.1 Details on Modulation Operators . 129
4.7.2 Further Discussion on Related Works . 130
4.7.3 Baselines . 130
4.7.4 Additional Experimental Details . 131

4.7.4.1 Regression . 131
4.7.4.2 Image Classification . 133
4.7.4.3 Reinforcement Learning . 138

4.7.5 Additional Experimental Results . 140
4.7.5.1 Regression . 140
4.7.5.2 Image Classification . 142
4.7.5.3 Reinforcement Learning . 142

Chapter 5: Meta-Learning on Long-Horizon and Sparse-Reward Tasks 146

5.1 Introduction . 146
5.2 Related Work . 148
5.3 Problem Formulation and Preliminaries . 149
5.4 Approach . 151

5.4.1 Skill Extraction . 152
5.4.2 Skill-based Meta-Training . 152
5.4.3 Target Task Learning . 154

5.5 Experiments . 155
5.5.1 Experimental Setup . 155

5.5.1.1 Maze Navigation . 156
5.5.1.2 Kitchen Manipulation . 157

5.5.2 Baselines . 157
5.5.3 Results . 158
5.5.4 Meta-Training Task Distribution Analysis . 160

5.6 Conclusion . 162
5.7 Appendix . 162

5.7.1 Meta-Reinforcement Learning Method Ablation . 162
5.7.2 Learning Efficiency on Target Tasks with Few Episodes of Experience 164
5.7.3 Investigating Offline Data vs. Target Domain Shift 165
5.7.4 Implementation Details on Our Method . 168

5.7.4.1 Model Architecture . 168
5.7.4.2 Training Details . 169

5.7.5 Implementation Details on Baselines . 170
5.7.5.1 SAC . 170
5.7.5.2 PEARL and PEARL-ft . 170
5.7.5.3 SPiRL . 171
5.7.5.4 Multi-task RL (MTRL) . 171

5.7.6 Meta-Training Tasks and Target Tasks. 172
5.7.6.1 Maze Navigation . 172
5.7.6.2 Kitchen Manipulation . 172

v

Chapter 6: Learning from Observation 175

6.1 Introduction . 175
6.2 Related Work . 177
6.3 Method . 179

6.3.1 Preliminaries . 179
6.3.2 Learning Goal Proximity Function . 180
6.3.3 Training Policy with Proximity Reward . 181

6.4 Experiments . 183
6.4.1 Experimental Setup . 183
6.4.2 Baselines . 184
6.4.3 Navigation . 185
6.4.4 Maze2D . 187
6.4.5 Ant Locomotion . 188
6.4.6 Robotic Manipulation . 188
6.4.7 Dexterous Hand Manipulation . 189
6.4.8 Ablation Study . 190

6.5 Conclusion . 193
6.6 Appendix . 194

6.6.1 Comparison with GAIL and Its Variants . 194
6.6.2 Failure of GAIfO and SQIL . 195
6.6.3 Analysis on Generalization of Our Method and Baselines 195
6.6.4 Further Ablations . 198
6.6.5 Qualitative Results . 200
6.6.6 Implementation Details . 201

6.6.6.1 Environment Details . 202
6.6.6.2 Network Architectures . 203
6.6.6.3 Training Details . 204

IV Task Execution 208

Chapter 7: Learning to Execute Programs 209

7.1 Introduction . 209
7.2 Related Work . 211
7.3 Problem Formulation . 213
7.4 Approach . 214

7.4.1 Program Interpreter . 215
7.4.2 Perception Module . 216
7.4.3 Policy . 216
7.4.4 Learning . 217

7.4.4.1 Perception Module . 218
7.4.4.2 Policy . 218

7.5 Experiments . 219
7.5.1 Experimental Setups . 219

7.5.1.1 Environment . 219
7.5.1.2 Task Instructions . 219

7.5.2 Training . 220
7.5.3 End-to-end Learning Models . 220

vi

7.5.4 Results . 221
7.5.4.1 Task Completion . 221
7.5.4.2 Analysis . 222

7.5.5 Policy Modulation . 223
7.6 Conclusion . 223
7.7 Appendix . 224

7.7.1 Program Execution . 224
7.7.2 DSL Design Principle . 225
7.7.3 Extended Related Work . 226
7.7.4 Discussions on Learned Modulation Mechanisms 227
7.7.5 Additional Experimental Details . 228

7.7.5.1 Environment Details . 228
7.7.5.2 Ground Truth Perceptions for End-to-end Learning Baselines 230
7.7.5.3 Task Instructions Details . 231
7.7.5.4 Network Architectures . 232
7.7.5.5 Raw RGB Input . 234
7.7.5.6 Failure Analysis . 235
7.7.5.7 Hyperparameters . 239
7.7.5.8 Computational Resources . 239

Chapter 8: Learning to Compose Skills 242

8.1 Introduction . 242
8.2 Related Work . 243
8.3 Approach . 245

8.3.1 Preliminaries . 246
8.3.2 Modular Framework with Transition Policies . 246
8.3.3 Training Transition Policies . 247

8.4 Experiments . 250
8.4.1 Baselines . 250
8.4.2 Robotic Manipulation . 252
8.4.3 Locomotion . 254
8.4.4 Ablation Study . 256
8.4.5 Training of Transition Policy and Proximity Predictor 256
8.4.6 Visualizing Transition Trajectory . 257

8.5 Conclusion . 259
8.6 Appendix . 260

8.6.1 Acquiring Primitive Policies . 260
8.6.2 Training Details . 260

8.6.2.1 Implementation Details . 260
8.6.2.2 Replay Buffers . 261
8.6.2.3 Proximity Reward . 261
8.6.2.4 Proximity Predictor . 262
8.6.2.5 Transition Policies . 263
8.6.2.6 Scalability . 265

8.6.3 Environment Descriptions . 265
8.6.3.1 Robotic Manipulation . 265
8.6.3.2 Locomotion . 267

vii

V Conclusion 271

Chapter 9: Conclusion 272

9.1 Summary . 272
9.2 Future Directions . 272

9.2.1 Program Inference . 273
9.2.2 Primitive Skill Acquisition . 274
9.2.3 Task Execution . 274

Bibliography 275

viii

List of Tables

2.1 Karel Results . 25

2.2 Ablation Study on Summarizer Module . 26

2.3 ViZDoom Results . 29

2.4 ViZDoom If-else Results . 29

3.1 Ablation Study . 46

3.2 Program Embedding Space Smoothness . 47

3.3 Results . 49

3.4 Generalization Results . 51

3.5 LEAPS Close Latent Program Interpolation . 59

3.6 LEAPS Far Latent Program Interpolation . 60

3.7 Program Evolution Over CEM Search . 62

3.8 Human Debugging Experiment Results . 63

3.9 Additional Generalization Results . 66

3.10 Unseen Configurations Performance . 68

3.11 Program Token Generation Probabilities . 75

3.12 LEAPS Length 100 Synthesized Karel Programs . 76

4.1 Regression Results . 121

4.2 Classification Results . 124

ix

4.3 RL Results . 128

4.4 Additional Regression Results . 133

4.5 Classification Dataset Details . 134

4.6 Hyperparameters for Classification . 135

4.7 2-mode Classification Results . 136

4.8 3-mode Classification Results . 136

4.9 5-mode Classification Results . 137

4.10 Hyperparameters for RL . 140

6.1 Environment Details . 205

6.2 Hyperparameters for Baselines . 205

6.3 Hyperparameters for Our Method . 207

7.1 Results . 221

7.2 End-to-end Architecture Details . 234

8.1 Robotic Manipulation Results . 253

8.2 Locomotion Results . 255

8.3 Hyperparameters . 260

x

List of Figures

1.1 Overview of Program-Guided Framework for Interpreting and Acquiring Complex Skills
with Learning Robots . 2

2.1 Illustration of Neural Program Synthesis from Demonstration Videos 13

2.2 Domain-Specific Language . 15

2.3 Model Overview . 16

2.4 Summarizer Module . 20

2.5 Karel Results . 22

2.6 ViZDoom Results . 27

2.7 Analysis on Varying Numbers of Demonstration Videos . 30

3.1 Domain Specific Language . 38

3.2 Framework Overview . 40

3.3 Karel Problem Set . 44

3.4 Visualizations of Learned Program Embedding Space . 95

3.5 StairClimber CEM Trajectory Visualization . 96

3.6 FourCorner CEM Trajectory Visualization . 97

3.7 Human Debugging Experiment User Interface . 98

3.8 Human Debugging Experiment Example Programs (TopOff) 99

3.9 Human Debugging Experiment Example Programs (FourCorner) 100

3.10 Human Debugging Experiment Example Programs (Harvester) 101

xi

3.11 Ground-Truth Test Programs and Karel Programs . 102

3.12 Program Reconstruction Task Synthesized Programs (naïve, LEAPS-P, LEAPS-P+R) 103

3.13 Program Reconstruction Task Synthesized Programs (LEAPS-P+L, LEAPS) 104

3.14 LEAPS Karel Tasks Synthesized Programs . 105

3.15 LEAPS Ablations Illustrations . 106

3.16 Baseline Methods Illustrations . 107

3.17 Program Length Histograms . 108

3.18 Karel Task Start/End State Depictions . 109

3.19 Karel Rollout Visualizations . 111

4.1 Model Overview . 118

4.2 Regression Results . 122

4.3 Visualization of Embedded Tasks . 124

4.4 RL Environments . 125

4.5 Point Mass Results . 126

4.6 Reacher and Ant Results . 126

4.7 Visualization of Embedded Regression Tasks . 131

4.8 Visualization of Regression Results . 133

4.9 Classification Dataset Summary . 134

4.10 Visualization of Embedded Classification Tasks . 137

4.11 Training Curves on RL Tasks . 138

4.12 Additional Regression Results . 141

4.13 Additional Point Mass Results . 143

4.14 MAML and Multimodal MAML Training Curves on Classification Tasks 144

4.15 Multi-MAML Training Curves on Classification Tasks . 145

xii

5.1 Overview . 146

5.2 Method Overview . 151

5.3 Environments . 156

5.4 Target Task Learning Efficiency . 159

5.5 Qualitative Results . 160

5.6 Meta-Training Task Distribution Analysis . 161

5.7 Task Distributions for Task Length Ablation . 164

5.8 Meta-Training Performance for Task Length Ablation . 165

5.9 Qualitative Result of Meta-RL Method Ablation . 166

5.10 Performance with Few Episodes of Target Task Interaction 167

5.11 Image-Based Maze Navigation with Distribution Shift . 167

5.12 Maze Meta-Training and Target Task Distributions . 172

5.13 Maze Meta-Training and Target Task Distributions for Meta-training Task Distribution
Analysis . 172

6.1 Framework Overview . 176

6.2 Environments . 183

6.3 Goal Completion Rate . 185

6.4 Generalization Analysis . 187

6.5 Goal Proximity Function Analysis . 189

6.6 Ablation Study . 190

6.7 Analysis on Generalizing to Unseen States . 197

6.8 Additional Ablation Study . 199

6.9 Analysis on Proximity Discounting Factor . 200

6.10 Effect of Spectral Normalization . 201

6.11 Proximity Prediction Visualization . 206

xiii

6.12 Navigation 25% heldout Set . 207

7.1 Overview . 211

7.2 Domain-Specific Language . 211

7.3 Framework Overview . 214

7.4 Learning a Multitask Policy via Learned Modulation . 217

7.5 Analysis on End-to-end Learning Models . 222

7.6 Environment Example . 230

7.7 First Failure Rate of Subtasks . 236

7.8 Average Time Cost of Subtasks . 236

7.9 Additional Analysis on Completion Rates . 237

7.10 Exemplar Data and Language Ambiguity . 239

7.11 Training Program Statistics . 240

7.12 Testing Program Statistics . 240

7.13 Complex Testing Program Statistics . 241

8.1 Transition Policy Illustration . 244

8.2 Framework Overview . 245

8.3 Training Overview . 248

8.4 Results . 251

8.5 Average Transition Length and Proximity Reward . 257

8.6 Visualization of Transition Trajectories . 258

8.7 Ablation Study on Proximity Discounting Factor . 262

xiv

Abstract

Recent development in artificial intelligence and machine learning has remarkably advanced machines’

ability to understand images and videos, comprehend natural languages and speech, and outperform human

experts in complex games. However, building intelligent robots that can physically interact with their

surroundings as well as learn to operate in unstructured environments, manipulate unknown objects, and

acquire novel skills – to free humans from tedious or dangerous manual work – remains challenging. The

focus of my research is to develop a robot learning framework that enables robots to acquire long-horizon

and complex skills with hierarchical structures, such as furniture assembly and cooking. Specifically, I aim to

devise a robot learning framework which is: (1) interpretable: by decoupling interpreting skill specifications

(e.g. demonstrations, reward functions) and executing skills, (2) programmatic: by generalizing from simple

instances to complex instances without additional learning, (3) hierarchical: by operating on a proper

level of abstraction that enables human users to interpret high-level plans of robots allows for composing

primitive skills to solve long-horizon tasks, and (4) modular: by being equipped with modules specialized

in different functions (e.g. perception, action) which collaborate, allowing for better generalization. This

dissertation discusses a series of research projects toward building such an interpretable, programmatic,

hierarchical, and modular robot learning framework.

xv

Part I

Introduction

1

Chapter 1

Introduction

1.1 Overview

Recent advancement in artificial intelligence and machine learning has remarkably advanced machines’

ability to understand images and videos (e.g. object detection, semantic segmentation, action recognition,

image captioning), comprehend natural languages and speech (e.g. machine translation, document sum-

marization, speech recognition), and even outperform human experts in complex games (e.g. Go, Dota

2, StarCraft II). With the ability to learn, those systems generalize reasonably well on a wide range of

tasks, and some have even been deployed as widely used products. However, building reliable artificial

Environment

Demonstration

pickUp attach place moveTo release

Primitive Skills

def run():
 pickUp(top, left_arm, on, floor)
 moveTo(left_arm, (0,0,5), (0,0,0))
 for(x, num(leg, on, floor)):
 pickUp(leg, right_arm, on, floor)
 moveTo(right_arm, (2,0,3), (0,0,0))
 attach()
 release(right_arm)
 moveTo(left_arm, (0,0,5), (0,0,360.0/x))
 if(isThere(back, on, floor)):
 pickUp(back, right_arm, on, floor)
 moveTo(right_arm, (1,0,7), (90,0,0))
 attach()
 release(right_arm)

Program

Action

Program
Inference

Primitive Skill
Acquisition

Task
Execution

Figure 1.1: An overview of the proposed program-guided framework for interpreting and acquiring complex
skills with learning robots. Learning and inference modules (in blue) connect demonstration, environment,
program, primitive skills, and executable action (in black).

2

intelligence agents (i.e. robots) that can physically interact with their surroundings while learning to operate

in unstructured environments, manipulate unseen objects, and acquire novel skills – to free humans from

tedious or dangerous manual work – remains challenging.

Recently, the success of deep reinforcement learning (DRL) has led many researchers to develop learning

frameworks to control robots. Compared to traditional robotics pipelines, DRLmethods approximate policies

using deep neural networks, which are optimized to automate the process of designing sensing, planning,

and control algorithms by letting robots learn in an end-to-end fashion. Despite the recent progress in the

field, such neural network policies suffer from several fundamental issues. First, such black-box policies are

not interpretable to humans and therefore are difficult to debug when robots fail to perform a task. Second,

acquiring complex skills through trial and error still remains challenging and these neural network policies

often have difficulty generalizing to novel scenarios. Third, most existing works are limited to short-horizon

skills such as pushing and picking up objects. Finally, most approaches are designed to acquire skills from

scratch instead of building upon previously learned skills.

The focus of my research is to develop a robot learning framework that allows robots to acquire long-

horizon and complex skills with hierarchical structures such as furniture assembly and cooking. Specifically,

I aim to devise a robot learning framework which is: (1) interpretable: by decoupling interpreting

skill specifications (e.g. demonstrations, reward functions) and executing skills, (2) programmatic: by

generalizing from simple instances to complex instances without additional training, (3) hierarchical: by

operating on a proper level of abstraction that enables human users to interpret high-level plans of robots

allows for composing primitive skills to solve long-horizon tasks, and (4)modular: by being equipped with

modules specialized in different functions (e.g. perception, action) which collaborate together, allowing for

better generalization.

To this end, I present a robot learning framework which represents desired behaviors as a program as

well as acquires and utilizes primitive skills for learning to execute desired skills, as shown in Figure 1.1.

3

Specifically, instead of learning in an end-to-end manner, I propose to design specialized learning modules

that aim to (1) perform program inference to explicitly infer underlying programs that describe the skills

of interest, (2) acquire primitive skills that can be used to compose more complex and longer-horizon

skills, and (3) perform task execution by following the inferred program and utilizing acquired primitive

skills to replicate the desired skills. In the following, I will discuss the details of each module.

1.1.1 Program Inference

I propose to utilize programs, structured in a formal domain-specific language, to describe behaviors (see an

example program in Figure 1.1). Programs are not only interpretable to humans, but also more directly

machine-executable since they are less ambiguous compared to natural languages. However, specifying a

task or a desired behavior by writing a program requires substantial expertise and can be tedious. Therefore,

I propose to learn to perform program inference, which aims to construct a program that describes a

task-solving procedure from task specifications which are easier to provide (e.g. demonstrations, reward

functions). In the following, I will describe the projects carried out by my collaborators and me, which

focus on learning to perform program inference from such task specifications.

1.1.1.1 Learning to Synthesize Programs from Demonstrations

In [287], we aim to interpret the provided demonstrations and infer the intended skill by learning to explicitly

synthesizing the underlying program which describes the skill in a structured language. A synthesized

program explicitly describes diverse situations and the corresponding subtasks to execute. Moreover, a

program describes tasks and their hierarchies at a set level of abstraction (e.g. actions such as moveTo,

attach and perceptions such as isThere), providing scaffolding for learning long-horizon, hierarchically

structured tasks. Specifically, in [287], we study the problem of mimicking behaviors presented in a

set of demonstration videos, where demonstrator’s behaviors vary from video to video due to different

4

environmental conditions. To address it, we propose to synthesize a program from demonstration videos

and then execute the program to replicate the demonstrator’s behavior. The results suggest that learning to

explicitly synthesize programs instead of learning a black-box policy encourages the model to pay extra

attention to the decision-making logic of the demonstrator, leading to its superior performance.

1.1.1.2 Learning to Synthesize Programs from Reward Functions

While [287] achieves promising results on learning to synthesize programs from demonstrations, obtaining

demonstrations can sometimes be expensive or even impossible. Therefore, in [304], we aim to devise a

framework that can learn to perform program inference directly from reward signals provided by a Markov

decision process (MDP). To alleviate the difficulty of learning to compose programs to induce the desired

agent behavior from scratch, we propose to first learn a program embedding space that continuously

parameterizes diverse behaviors in an unsupervised manner and then search over the learned program

embedding space to yield a program that maximizes the return for a given task. The results suggest that

the proposed framework can produce interpretable and more generalizable policies which outperform DRL

methods.

Beside inferring programs from a variety of task specifications, our recent work explores synthesizing

a program by hierarchically composing multiple programs. This allows for synthesizing programs that are

long and deeply nested, which can induce more complex behaviors, and therefore increases the applicability

of representing behaviors using programs.

1.1.2 Primitive Skill Acquisition

The aim of this stage is to robustly and efficiently acquire a set of primitive skills (e.g. moveTo, attach,

place in Figure 1.1) that can be used to compose more complex skills to enable executing behaviors

specified in programs obtained from the program inference stage. To this end, my research focuses on

5

meta-learning and learning from demonstrations. In the following, I will describe the projects carried out

by my collaborators and me, which focus on these two directions.

1.1.2.1 Meta-Learning & Meta-Reinforcement Learning

Meta-Learning on Multimodal Task Distributions. To efficiently acquire a diverse set of skills, we

propose to leverage the recent advancement in meta-learning and meta-reinforcement learning. Specifically,

we aim to leveragemodel-agnostic meta-learning (MAML), which allows an agent to learn from a distribution

of tasks and then quickly adapt to novel tasks with few gradient updates. Yet, MAML seeks a common

initialization shared across the entire task distribution, substantially limiting the diversity of the task

distributions that they can learn from. To enable an agent to adapt to a diverse set of primitive skills, we

propose a multimodal MAML framework [315, 316], which can modulate its meta-learned prior parameters

according to the identified task families, allowing more efficient fast adaptation. The proposed multimodal

MAML framework achieves superior performance on not only reinforcement learning but also few-shot

regression and image classification.

Meta-Learning on Long-Horizon and Sparse-Reward Tasks. In our recent works [205, 206, 207], we

aim to address a common issue of most existing meta-reinforcement learning methods – they are limited

to short-horizon tasks with dense rewards. To this end, we propose to first extract composable skills and

a skill prior from agent play data in the form of offline datasets, which then enables meta-learning on

long-horizon, sparse-reward tasks.

1.1.2.2 Learning from Demonstrations

Learning from Observation. Another research direction that aims to improve sample efficiency for

acquiring skills is learning from demonstrations. However, demonstrators’ actions might not always be

available and how a learning agent can generalize beyond situations seen in demonstrations remains

6

challenging. In [161], we study learning from observation (i.e. imitate demonstrators without accessing

to their actions but only state sequences) and generalization to novel situations beyond demonstrations.

Specifically, we proposed to learn a task progress estimator and use the task progress estimate as a dense

reward for training a policy. We show that our proposed method can robustly generalize compared to prior

methods on a set of tasks in navigation, locomotion, and robotic manipulation – even with demonstrations

that cover only part of the states.

1.1.3 Task Execution

To replicate a skill by following an inferred program (Section 1.1.1) and utilizing a set of acquired primitive

skills (Section 1.1.2), an agent needs to (1) deduce the correct order of primitive skills that need to be

executed as well as (2) smoothly chain them together.

1.1.3.1 Learning to Execute Programs

To address (1), we propose a framework that learns to interpret and follow a program by employing a

perception module which learns to decide which path in a program should be taken and a policy which

fulfills each desired primitive skill in [288].

1.1.3.2 Learning to Compose Skills

For (2), when the primitive skills were independently obtained and the environment dynamic is complex

(e.g. continuous control), simply sequentially executing the primitive skills can often fail. Therefore, we

propose to learn transition policies which effectively navigate from an ending state of any primitive skill to

suitable initial states of the following primitive skill in [160].

7

1.2 Published Works

This dissertation presents a number of techniques for allowing learning robots to interpret and acquire

complex skills, whichwere presented at top-tier computer science andmachine learning venues. This section

enumerates these published works, and briefly describes the content of each chapter in this dissertation.

Part II: Program Inference

• Chapter 2 corresponds to a paper [287] published at International Conference on Machine Learning

(ICML) 2018. It aims to infer decision making logic in demonstration videos, allowing for accurately

imitating demonstrator’s behaviors. To this end, we propose a framework that is able to explicitly

synthesize underlying programs, that describe demonstrator decision making logic, from behaviorally

diverse and visually complicated demonstration videos.

• Chapter 3 corresponds to a paper [304] published at Neural Information Processing Systems (NeurIPS)

2021. It presents a framework that learns to synthesize a program, detailing the procedure to solve

a task in a flexible and expressive manner, solely from reward signals. To alleviate the difficulty of

learning to compose programs to induce the desired agent behavior from scratch, we propose to learn

a program embedding space that continuously parameterizes diverse behaviors in an unsupervised

manner and then search over the learned program embedding space to yield a program that maximizes

the return for a given task.

Part III: Primitive Skill Acquisition

• Chapter 4 corresponds to a paper [315] published at Neural Information Processing Systems (NeurIPS)

2019 and a paper [316] presented in Meta-Learning Workshop at Neural Information Processing

Systems (NeurIPS) 2018. Model-agnostic meta-learners aim to acquire meta-prior parameters from

a distribution of tasks and adapt to novel tasks with few gradient updates. Yet, seeking a common

initialization shared across the entire task distribution substantially limits the diversity of the task

8

distributions that they are able to learn from. We propose a multimodal MAML (MMAML) framework,

which is able to modulate its meta-learned prior according to the identified mode, allowing more

efficient fast adaptation.

• Chapter 5 corresponds to a paper [207] published at International Conference on Learning Repre-

sentations (ICLR) 2022, a paper [205] presented in Meta-Learning Workshop at Neural Information

Processing Systems (NeurIPS) 2021, and a paper [206] presented in Deep RL Workshop at Neural

Information Processing Systems (NeurIPS) 2021. We devise a method that enables meta-learning on

long-horizon, sparse-reward tasks, allowing us to solve unseen target tasks with orders of magnitude

fewer environment interactions. Specifically, we propose to (1) extract reusable skills and a skill prior

from offline datasets, (2) meta-train a high-level policy that learns to efficiently compose learned

skills into long-horizon behaviors, and (3) rapidly adapt the meta-trained policy to solve an unseen

target task.

• Chapter 6 corresponds to a paper [161] published at Neural Information Processing Systems (NeurIPS)

2021. Task progress is intuitive and readily available task information that can guide an agent closer

to the desired goal. Furthermore, a progress estimator can generalize to new situations. From

this intuition, we propose a simple yet effective imitation learning from observation method for a

goal-directed task using a learned goal proximity function as a task progress estimator, for better

generalization to unseen states and goals. We obtain this goal proximity function from expert

demonstrations and online agent experience, and then use the learned goal proximity as a dense

reward for policy training.

Part IV: Task Execution

• Chapter 7 corresponds to a paper [288] published at International Conference on Learning Represen-

tations (ICLR) 2020. We propose to utilize programs, structured in a formal language, as a precise

9

and expressive way to specify tasks, instead of natural languages which can often be ambiguous. We

then devise a modular framework that learns to perform a task specified by a program – as different

circumstances give rise to diverse ways to accomplish the task, our framework can perceive which

circumstance it is currently under, and instruct a multitask policy accordingly to fulfill each subtask

of the overall task.

• Chapter 8 corresponds to a paper [160] published at International Conference on Learning Repre-

sentations (ICLR) 2019. Humans acquire complex skills by exploiting previously learned skills and

making transitions between them. To empower machines with this ability, we propose a method that

can learn transition policies which effectively connect primitive skills to perform sequential tasks

without handcrafted rewards. To efficiently train our transition policies, we introduce proximity

predictors which induce rewards gauging proximity to suitable initial states for the next skill.

10

Part II

Program Inference

11

Chapter 2

Learning to Synthesize Programs from Demonstrations

2.1 Introduction

Imagine you are watching others driving cars. You will easily notice many common behaviors even if you

know nothing about driving. For example, cars stop when a traffic light turns to red and move again when

the light turns to green. Cars also slow down when drivers see a pedestrian jay-walking. Just like in this

example, humans can abstract behaviors – especially extracting the structural relationship between action

and perception (e.g. light, pedestrian).

Can machines also reason decision making logic behind behaviors? While there has been tremendous

effort and success in understanding videos, they have been mostly focused on recognizing actions, finding

and naming objects, or predicting future outcomes. However, the problem of reasoning decision making

logic behind behaviors is a crucial skill for machines to mimic and collaborate with humans. Hence, our

goal is to step towards developing a method that can interpret perception-based decision making logic from

visual behavior demonstrations.

Our insight is to exploit declarative programs, structured in a formal language, as behavior interpreting

representations. The formal language is composed of action blocks, perception blocks, and control flow (e.g.

if/else). Programs written in such a language can explicitly model the connection between an observation

(e.g. traffic light, biker) and an action (e.g. stop). An example is shown in Figure 2.1. Described in a formal

12

def run():
while frontIsClear():
move()

turnRight()
if thereIsPig():
attack()

else:
if not thereIsWolf():
spawnPig()

else:
giveBone()

Synthesized Program
Demonstrations

demo 1

demo 2

demo 3

Figure 2.1: An illustration of neural program synthesis from demonstration videos. Given multiple demon-
stration videos exhibiting diverse behaviors, our neural program synthesizer learn to produce interpretable
and executable underlying programs. Divergence above occurs based on perception in the second frame.

language, programs are logically interpretable and executable. Thus, the problem of interpreting decision

making logic from visual demonstrations can be reduced to extracting an underlying program.

In fact, there have been many neural network frameworks proposed recently for program induction or

synthesis. First, a variety of frameworks [132, 247, 332, 61] are proposed to induce latent representations of

underlying programs. While they can be efficient at mimicking desired behaviors, they do not explicitly

yield interpretable programs, resulting in inexplicable failure cases. On the other hand, there is another line

of work directly synthesizing programs [63, 35] giving full interpretability. These approaches have shown

highly competitive results in simple input/output pairs but are limited in the expressibility of programs.

Hence, in this paper, we further extend their models with our model to synthesize programs while handling

complex visual sequential inputs.

Our goal is to interpret logics behind various visual demonstrations. In other words, we want a model

that can synthesize programs mimicking behaviors in demonstrations. Therefore, the model is required

to handle diverse sequential visual data. To address this requirement, we propose a program synthesis

architecture augmented with a summarizer module – a module that is capable of encoding the inter-

relation between multiple demonstrations and summarizes them into a compact vector representation. The

13

summarizer module empowers the model to handle a varying number of demonstrations, resulting in extra

flexibility.

We extensively evaluate our model in two distinct environments: a fully observable, third-person

environment (Karel) and a partially observable, egocentric game (ViZDoom). Our experiments in both

environments show that directly modeling a behavior as a program has several benefits such as a better

reasoning of the underlying conditions behind action compared against other methods. We also present an

additional strength of our approach such as interpretability that enables human interaction for fixing and

debugging.

In summary, in this paper, we introduce a novel problem of program synthesis from demonstrations of

sequential visual data and a method to address it. This ultimately enables machines to explicitly interpret

decision making logic and further interact with humans through a debugging process. We also demonstrate

that our algorithm can synthesize programs reliably on multiple environments.

2.2 Related Work

Program Induction Learning to perform a specific task by inducing latent representations of underlying

task-specific programs is known as program induction. Various approaches have been developed: designing

end-to-end differentiable architectures [95, 96, 347, 132, 131, 97, 208], learning to call subprograms using

step-by-step supervision [247, 38], and few-shot program induction [61]. Contrary to our work, those

method do not return explicit programs.

Program Synthesis The line of work in program synthesis focuses on explicitly producing programs that

are restricted to certain languages. [24] train a model to predict program attributes and used external search

algorithms for inductive program synthesis. [219, 63] directly synthesize simple string transformation

programs. [35] employ reinforcement learning to directly optimize the execution of generated programs.

14

Programm := def run() : s
Statement s := while(b) : (s) | s1; s2 | a | repeat(r) : (s)

| if(b) : (s) | ifelse(b) : (s1) else : (s2)
Repetition r := Number of repetitions
Condition b := percept | not b
Perception p := Domain dependent perception primitives

Action a := Domain dependent action primitives

Figure 2.2: Domain-specific language for the program representation. The program is composed of domain
dependent perception and action primitives and control flows.

However, those methods are limited to synthesizing programs from input-output pairs, which substan-

tially restricts the expressibility of the programs that are considered; instead, we address the problem of

synthesizing programs from full demonstrations videos.

Imitation Learning The methods that are concerned with acquiring skills from expert demonstrations,

dubbed imitation learning, can be split into behavioral cloning [236, 237, 251] which casts the problem as a

supervised learning task and inverse reinforcement learning [210] that extracts estimated reward functions

given demonstrations. Recently, [69, 82, 332] have studied the task of mimicking given few demonstrations.

This line of work can be considered as program induction, as they imitate demonstrations without explicitly

modeling underlying programs. While those methods are able to mimic given few demonstrations, it is not

clear if they could deal with multiple demonstrations with diverse branching conditions.

2.3 Problem Overview

In this section, we define our formulation for program synthesis from diverse demonstration videos. We

would like to comprehend and replicate demonstrated behaviors by revealing the formal structure between

demonstrators’ perception and actions. We therefore formally define programs in a domain-specific language

(DSL) with perception primitives, action primitives and control flows. Action primitives define the way that

15

Demo
Encoder

Program
Decoder

Perception
Decoder

Action
Decoder

…

Demo 1 …
def run():
move()
if leftIsClear():
 turnLeft()
REPEAT R=5:
 turnRight()
if MarkersPresent():
 pickupMarker()
else:
 move()

Program

Demo
Encoder

Demo
Encoder

move()def run() move()

Demo 2

Demo k

else

…c
c

frontIsClear()
rightIsClear()
MarkersPresent()

yes
no
yes

…

move() turnLeft() pickupMarker()

move() turnRight() pickupMarker()

…move() turnLeft() move()

…
…

…

…

Summarizer
Module

v1demo

v2demo

vkdemo

vsummary

Figure 2.3: Model Architecture. The demonstration encoder encodes each of the k demonstrations separately
and the summarizer network aggregates them to construct a summary vector. The summary vector is used
by the program decoder to produce program tokens sequentially. The encoded demonstrations are used to
decode the action sequence and perception conditions as additional supervision.

agents can interact with an environment, while perception primitives describe how agents can percept it.

On the other hand, control flows can include if/else statements, while loops, repeat statements, and simple

logic operations. An example of control flows introduced in [226] is shown in Figure 2.2. Note that we

focus on perceptions with boolean returns in this paper, while more generic perception type constraint is

possible.

A program η is a deterministic function that outputs an action a ∈ A given a history of states at time

step t, Ht = (s1, s2, ..., st), where s ∈ S is a state of the environment. The generation of an action given

the history of states is represented as at = η (Ht). In this paper, we focus on a program type that can be

represented in DSL by a code C = (w1, w2, ..., wN), which is a sequence of tokens w.

A demonstration τ = ((s1, a1), (s2, a2), ..., (sT , aT)) is a sequence of state and action tuples generated

by an underlying program η∗ given a initial state s1. Given an initial state s1 and its corresponding state

history H1, the program generates new action a1 = η∗ (H1). The following state s2 is generated by a

state transition function T : s2 ∼ T (s1, a1). The newly sampled state is incorporated into the state history

H2 = H1
⌢ (s2) and this process is iterated until the end of file action EOF ∈ A is returned by the

program. A set of demonstrations D = {τ1, τ2, ..., τK} can be generated by running a single program η∗

16

on different initial states s11, s21, ..., sK1 , where each initial state is sampled from a initial state distribution

(i.e. sK1 ∼ P0(s1)).

While we are interested in inferring a program η∗ from a set of demonstrations D, it is preferable to

predict a code C∗ instead, because it is a more accessible representation while immediately convertible

to a program. Formally, we formulate the problem as a sequence prediction where the input is a set of

demonstrationsD and the output is a code C . Note that our objective is not about inferring a code perfectly

but instead generating a code that can infer a program. This requires a carefully chosen measure for

successful code synthesis, discussed in Section 2.5.1.

2.4 Approach

Inferring a program behind a set of demonstrations requires (1) interpreting each demonstration video (2)

spotting and summarizing the difference among demonstrations to infer the conditions behind the taken

actions (3) describing the understanding of demonstrations in a written language, Based on this intuition,

we design a neural architecture composed of three components:

• Demonstration Encoder receives a demonstration video as input and produces an embedding that

captures an agent’s actions and perception.

• Summarizer Module discovers and summarizes where actions diverge between demonstrations

and upon which branching conditions subsequent actions are taken.

• Program Decoder represents the summarized understanding of demonstrations as a code sequence.

The details of the three main components are described in the Section 2.4.1, and the learning objective

of the proposed model is described in Section 2.4.2. Section 2.4.3 introduces auxiliary tasks for encouraging

the model to learn the knowledge that is essential to infer a program.

17

2.4.1 Model Architecture

Figure 2.3 illustrates the overall architecture of the proposed model, which is composed of demonstration

encoders, a summarizer module, and a program decoder. Details of each component are described in the

following sections.

2.4.1.1 Demonstration Encoder

The demonstration encoder performs two types of understanding over a single demonstration. The first is

understanding visible actions in each time steps and the second is summarizing the overall action sequence

in a demonstration as a single idea. The demonstration encoder performs both types of understanding at

the same time using a state encoder and an LSTM (Long Short Term Memory) [115].

The state encoder, a stack of convolutional layers, encodes a state st to its embedding as a state vector

vtstate = CNNenc(st) ∈ Rd, where t ∈ [1, T] is the time-step.

The LSTM encodes each state representation and summarized representation at the same time.

ctenc, h
t
enc = LSTMenc(v

t
state, c

t−1
enc , h

t−1
enc), (2.1)

where, t ∈ [1, T] is the time step, ctenc is the cell state, htenc is the hidden state. Both the final state tuples

(cTenc, h
T
enc) encode the overall idea of the demonstration and intermediate hidden states {h1enc, h2enc, ..., hTenc}

containing high level understanding of each state and are used as an input to the following modules.

2.4.1.2 Summarizer Module

The summarizer module first reviews each demonstration again with the context of the whole demon-

strations to infer underlying conditions behind visible actions. The inferred conditions are summarized

within a demonstration and then summarized again over multiple demonstrations. An illustration of the

summarizer is shown in Figure 2.4.

18

The first summarization is performed by a reviewer module, an LSTM initialized with the pooled final

state tuples of the demonstration encoder. The pooled final state tuples of the demonstration encoder is

formally written as follows

c0review =
1

K

K∑

k=1

cT,kenc , h0review =
1

K

K∑

k=1

hT,kenc , (2.2)

where (cT,kenc , h
T,k
enc) is the final state tuple of the kth demonstration encoder. Then the reviewer LSTM

encodes the hidden states

ctreview, h
t
review = LSTMreview(h

t
enc, c

t−1
review, h

t−1
review), (2.3)

where the final hidden state becomes a demonstration vector vdemo = hTreview ∈ Rd, which includes the

summarized information within a single demonstration.

The final summarization, which is performed over multiple demonstrations, is performed by an aggre-

gation module. The aggregation module gets K demonstration vectors and summarize them into a single

compact vector representation. To effectively model complex relations between different demonstrations,

we employ relational networks (RN) [257]. The aggregation process is formally written as follows.

vsummary = RN
(
v1demo, v

2
demo, ..., v

K
demo

)
, (2.4)

where vsummary ∈ Rd is the the summarized demonstration vector. We show that employing the summarizer

module significantly alleviate the difficulty of handling multiple demonstrations and improve generalization

over different number of generations in Section 2.5 .

19

vsummary

LSTM

LSTM LSTM

LSTM

s11 sT1

LSTM

LSTM LSTM

LSTM

s1k sTk

…

Demo 1

Demo k

Average

Pooling

zero
state

zero
state

Relation

Network

…

…

z
Demonstration

Encoder

Summarizer
Module z

z

…

… vkdemo

v1demo

Figure 2.4: Summarizer Module. The demonstration encoder (inner layer) encodes each demonstration
starting from a zero state. The summarizer module (outer layer) aggregates the outputs of the demonstration
encoder with a relation network to provide context from other demonstrations.

2.4.1.3 Program Decoder

The program decoder generates programs from a summarized vector representation of the demonstrations.

We use LSTMs similar to [290, 312] as a program decoder. Initialized with the summary vector vsummary,

the LSTM at each time step gets the previous token embedding as an input and outputs a probability of the

following program tokens as in the Equation 2.5. During training, the previous ground truth token is fed as

an input, and during inference, the predicted token in the previous steps is fed as an input.

2.4.2 Learning

The proposed model learns a conditional distribution between a set of demonstrations D and a corre-

sponding code C = {w1, w2, ..., wN}. By employing the LSTM program decoder, this problem becomes an

autoregressive sequence prediction [290]. For a given demonstration and previous code token wi−1, our

model is trained to predict the following ground truth token w∗
i , where the cross entropy loss is optimized.

Lcode = −
1

NM

M∑

m=1

N∑

n=1

log p(w∗
m,n|Wm

m,n−1, Dm), (2.5)

20

where M is the total number of training examples, wm,n is the nth token of the mth training example and

Dm are mth training demonstrations. Wm,n = {wm,1, ..., wm,n} is the history of previous token inputs at

time step n.

2.4.3 Multi-task Objective

To reason an underlying program from a set of demonstrations, the primary and essential step is recognizing

actions and perceptions happening in each step of the demonstration. However, it can be difficult to learn

meaningful representations purely from the sequence loss of programs when environments increase in

visual complexity. To alleviate this issue, we propose to predict additional action sequences and a perception

vector from the demonstrations as auxiliary tasks. The overview of the auxiliary tasks are illustrated

in Figure 2.3.

The first auxiliary task is predicting action sequences. Given a demo vector encoded by the demonstra-

tion encoder, an action decoder LSTM decodes kth demo vector vkdemo into a sequence of actions. During

training, a sequential cross entropy loss similar to Equation 2.5 is optimized:

LA = − 1

MKT

M∑

m=1

K∑

k=1

T∑

t=1

log p(ak∗m,t|Ak
m,t−1, v

k
demo), (2.6)

where, akm,t is the t-th action token in k−th demonstration ofm-th training example,Ak
m,t = {akm,1, ..., a

km, t}

is the history of previous actions at time step t.

The second auxiliary task is predicting perceptions for each frame of the demonstrations. We denote a

perception vector Φ = {ϕ1, ..., ϕL} ∈ {0, 1}L as a L dimension binary vector obtained by executing L

21

def run():
while frontIsClear():

move()
putMarker()
turnLeft()
move()
putMarker()
move()
move()

(b)

Underlying Program Synthesized Program

(a)

Program seen demo

unseen demo

def run():
turnRight()
turnRight()
while frontIsClear():

move()
if markersPresent():

turnLeft()
move()

else:
turnRight()

def run():
turnRight()
turnRight()
while frontIsClear():

move()
else:

turnRight()

Figure 2.5: Karel Results. Seen training examples are on top row (in blue) and unseen testing examples are
on the bottom row (in green). (a) A successful case with a program sequence match (b) Due to a missing
branch condition execution in training data (top images), the synthesized program doesn’t incorporate the
condition, resulting in execution mismatch in lower right testing image.

perception primitives on a given state s. Specifically, we formulate the perception vector prediction as a

sequential multi-label binary classification problem and optimizes the binary cross entropy.

LΦ =

− 1

MKTL

M∑

m=1

K∑

k=1

T∑

t=1

L∑

l=1

log p(ϕk∗
m,t,l|P k

m,t−1, v
k
demo),

(2.7)

where P k
m,t = {f(Φk

m,1), ..., f(Φ
k
m,t)} is the history of encoded previous perception vectors and f(·) is an

encoding function.

The aggregated multi-task objective is as follows: L = LC + αLA + βLΦ, where α and β are hyper-

parameter controlling the importance of each loss. For all the experiments in this paper, we set α = β = 1.

2.5 Experiments

We perform experiments in different environments: Karel [226] and ViZDoom [137]. We first describe the

experimental setup and then present the experimental results.

22

2.5.1 Evaluation Metric

To verify whether a model is able to infer an underlying program η∗ from a given set of demonstrations D,

we evaluate accuracy based on the synthesized codes and the underlying program (sequence accuracy and

program accuracy) as well as the execution of the program (execution accuracy).

Sequence accuracy Comparison in the code space is based on the instantiated code C∗ of a ground truth

program and the synthesized code Ĉ from a program synthesizer. The sequence accuracy counts exact

match of two code sequences, which is formally written as:

Accseq =
1

M

M∑

m=1

1seq(C
∗
m, Ĉm),

whereM is the number of testing examples and 1seq(·, ·) is the indicator function of exact sequence match.

Program accuracy While the sequence accuracy is simple, it is a pessimistic estimation of program

accuracy since it does not consider program aliasing – different codes with identical program semantics (e.g.

repeat(2):(move()) and move() move()). Therefore, we measure the program accuracy by enumerating

variations of codes. Specifically, we exploit the syntax of DSL to identify variations: e.g. unfolding repeat

statements, decomposing if-else statement into two if statements, etc. Formally, the program accuracy is

Accprogram = 1
M

∑M
m=1 1prog(C

∗
m, Ĉm), where 1prog(C

∗
m, Ĉm) is an indicator function that returns 1 if any

variations of Ĉm match any variations of C∗
m. Note that the program accuracy is only computable when the

DSL is relatively simple and some assumptions are made i.e. termination of loops. The details of computing

program accuracy are presented in Appendix (Section 2.7).

Execution accuracy To evaluate how well a synthesized program can capture the behaviors of an un-

derlying program, we compare the execution results of the synthesized program code Ĉ and the demon-

strations D∗ generated by a ground truth program η∗, where both are generated from the same set of

sampled initial states IK = {s11, ..., sK1 }. We formally define the execution accuracy as: Accexecution =

23

1
M

∑M
m=1 1execution(D

∗
m, D̂m),where 1execution(D

∗
m, D̂m) is the indicator function of exact sequence match.

Note that when the number of sampled initial states becomes infinitely large, the execution accuracy

converges to the program accuracy.

2.5.2 Evaluation Setting

For training and evaluation, we collectMtrain training programs andMtest test programs. Each program

code C∗
m is randomly sampled from an environment specific DSL and compiled into an executable form

η∗m. The corresponding demonstrations D∗
m = {τ1, ..., τK} are generated by running the program on

K = Kseen + Kunseen different initial states. The seen demonstrations are used as an input to the pro-

gram synthesizer, and the unseen demonstrations are used for computing execution accuracy. We train

our model on the training set Ωtrain = {(C∗
1 , D

∗
1), ..., (C

∗
Mtrain

, D∗
Mtrain

)} and test them on the testing set

Ωtest = {(C∗
1 , D

∗
1), ..., (C

∗
Mtest

, D∗
Mtest

)}. Note that Ωtrain and Ωtest are disjoint. Both sequence and execution

accuracies are used for the evaluation. The training details are described in Appendix (Section 2.7).

2.5.3 Baselines

We compare our proposed model (ours) against baselines to evaluate the effectiveness of: (1) explicitly

modeling the underlying programs (2) our proposed model with the summarizer module and multi-task

objective. To address (1), we design a program induction baseline based on [69], which bypasses synthesizing

programs and directly predicts action sequences. We modified the architecture to incorporate multiple

demonstrations as well as pixel inputs. The details are presented in Appendix (Section 2.7). For a fair

comparison with our model that gets supervision of perception primitives, we feed the perception primitive

vector of every frame as an input to the induction baseline . To verify (2), we compose a program synthesis

baseline simply consisting of a demonstration encoder and a program decoder without a summarizer module

24

and multi-task loss. To integrate all the demonstration encoder outputs across demos, an average pooling

layer is applied.

2.5.4 Karel

We first focus on a visually simple environment to verify the feasibility of program synthesis from demon-

strations. We consider Karel [226] featuring an agent navigating through a gridworld with walls and

interacting with markers based on the underlying program.

2.5.4.1 Environment and Dataset

Karel has 5 action primitives for moving and interacting with markers and 5 perception primitives for

detecting obstacles and markers. A gridworld of 8× 8 size is used for our experiments. To evaluate the

generalization ability of the program synthesizer to novel programs, we randomly generate 35,000 unique

programs and split them into a training set with 25,000 program, a validation set with 5,000 program, and a

testing set with 5,000 programs. The maximum length of the program codes is 43. For each program, 10 seen

demonstrations and 5 unseen demonstrations are generated. The maximum length of the demonstrations is

20.

Methods Execution Program Se-

quence

Induction baseline 62.8% (69.1%) - -
Synthesis baseline 64.1% 42.4% 35.7%
+ summarizer (ours) 68.6% 45.3% 38.3%
+ multi-task loss

(ours-full)
72.1% 48.9% 41.0%

Table 2.1: Performance evaluation on Karel environment. Synthesis baseline outperforms induction baseline .
The summarizer module and the multi-task objective introduce significant improvement.

25

2.5.4.2 Performance Evaluation

The evaluation results of our proposed model and baselines are shown in Table 2.1. Comparison of

execution accuracy shows relative performance of the proposed model and the baselines. Synthesis baseline

outperforms induction baseline based on the execution accuracy, which shows the advantage of explicit

modeling the underlying programs. Induction baseline often matches some of theKunseen demonstration,

but fails to match all of them from a single program. This observation is supported by the number in the

parenthesis (69.1%), which counts the number of correct demonstrations while execution accuracy counts

the number of program whose demonstrations match perfectly. This finding has also been reported in [63].

The proposed model shows consistent improvement over synthesis baseline for all the evaluation metrics.

The sequence accuracy for our full model is 41.0%, which is a reasonable generalization performance given

that none of the test programs are seen during training. We observe that our model often synthesizes

programs that do not exactly match with the ground truth program but are semantically identical. For

example, given a ground truth program repeat(4):(turnLeft; turnLeft; turnLeft), our model

predicts repeat (12): (turnLeft). These cases are considered correct for program accuracy. Note

that comparison based on the execution and sequence accuracy is consistent with the program accuracy,

which justifies using them as a proxy for the program accuracy when it is not computable.

The qualitative success and failure cases of the proposed model are described in Figure 2.5. The Figure

2.5(a) shows a correct case where a single program is used to generate diverse action sequences. Figure

2.5(b) show a failure case, where part of the ground truth program tokens are not generated due to missing

seen demonstration hitting that condition.

Methods k=3 k=5 k=10

Synthesis baseline 58.5% 60.1% 64.1%
+ summarizer

(ours)
60.6% 63.1% 68.6%

Improvement 2.1% 3.0% 4.5%

Table 2.2: Effect of the summarizer module. Employing the proposed summarizer module brings more
improvement as the number of seen demonstration increases over synthesis baseline .

26

Underlying Program

inTarget HellKnight
! attack()

inTarget HellKnight not inTarget Demon
! moveRight()

Demo 1

inTarget HellKnight and
inTarget Demon

inTarget HellKnight
! attack()

inTarget Demon
! attack()

Demo 2

def run():
if inTarget HellKnight:
attack()

if inTarget Demon:
 attack()
else:
 moveRight()

def run():
if inTarget HellKnight:
attack()

if not inTarget Demon:
 moveRight()
else:
 attack()

Synthesized Program

Figure 2.6: ViZDoom Results. Annotations below frames are the perception conditions and actions. Hel-
lknight, Revenant, and Demon monsters are white, black, and pink respectively. The model is able to
correctly percepts the condition and actions as well as synthesize a precise program. Note that the synthe-
sized and the underlying program are semantically identical.

2.5.4.3 Effect of Summarizer

To verify the effectiveness of our proposed summarizer module, we conduct experiments where models

are trained on varying numbers of demonstrations and compare the execution accuracy in Table 2.2. As

the number of demonstrations increases, both models enjoy a performance gain due to extra available

information. However, the gap between our proposed model and synthesis baseline also grows, which

demonstrates the effectiveness of our summarizer module.

2.5.5 ViZDoom

Doom is a 3D first-person shooter game where a player can move in a continuous space and interact with

monsters, items and weapons. We use ViZDoom [137], an open-source Doom-based AI platform, for our

experiments. ViZDoom’s increased visual complexity and a richer DSL could test the boundary of models

in state comprehension, demo summarization, and program synthesis.

27

2.5.5.1 Environment and Dataset

The ViZDoom environment has 7 action primitives including diverse motions and attack as well as 6

perception primitives checking the existence of different monsters and whether they are targeted. Each

state is represented by an image with 120× 160× 3 pixels. For each demonstration, initial state is sampled

by randomly spawning different types of monsters and ammos in different location and placing an agent

randomly. To ensure that the program behavior results in the same execution, we control the environment

to be deterministic.

We generate 80,000 training programs and 8,000 testing programs. To encourage diverse behavior of

generated program, we give a higher sampling rate to the perception primitives that has higher entropy

over K different initial states. We use 25 seen demonstrations for program synthesis and 10 unseen

demonstrations for execution accuracy measure. The maximum length of programs is 32 and the maximum

length of demonstrations is 20.

2.5.5.2 Performance Evaluation

Table 2.3 shows the result on ViZDoom environment. Synthesis baseline outperforms induction baseline

in terms of the execution accuracy, which shows the strength of program synthesis for understanding

diverse demonstrations. In addition, the proposed summarizer module and the multi-task objective bring

improvement in terms of all evaluation metrics. Also we found that the syntax of the synthesized programs

is about 99.9% accurate. This tells that the program synthesizer correctly learn the syntax of the DSL.

Figure 2.6 shows the qualitative result. It is shown that the generated program covers different condi-

tional behavior in the demonstration successfully. In the example, the synthesized program does not match

the underlying program in the code space, while matching the underlying program in the program space.

28

Methods Execution Program Sequence

Induction baseline 35.1% (60.6%) - -
Synthesis baseline 48.2% 39.9% 33.1%
Ours-full 78.4% 62.5% 53.2%

Table 2.3: Performance evaluation on ViZDoom environment. The proposed model outperforms induction
baseline and synthesis baseline significantly as the environment is more visually complex.

Methods Execution Program Sequence

Induction baseline 26.5% (83.1%) - -
Synthesis baseline 59.9% 44.4% 36.1%
Ours-full 89.4% 69.1% 58.8%

Table 2.4: If-else experiment on ViZDoom environment. Single if-else statement with two branching
consequences is used to evaluate ability of inferring underlying conditions.

2.5.5.3 Analysis

To verify the importance of inferring underlying conditions, we perform evaluation only with programs

containing a single if-else statement with two branching consequences. This setting is sufficiently simple

to isolate other diverse factors that might affect the evaluation result. For the experiment, we use 25

seen demonstrations to understand a behavior and 10 unseen demonstrations for testing. The result is

shown in Table 2.4. Induction baseline has difficulty inferring the underlying condition to match all unseen

demonstrations most of the times. In addition, our proposed model outperforms synthesis baseline ,2 which

demonstrates the effectiveness of the summarizer module and the multi-task objective.

Figure 2.7 illustrates how models trained with a fixed number (25) of seen demonstration generalize

to fewer or more seen demonstrations during testing time. This shows our model and synthesis baseline

are able to leverage more seen demonstrations to synthesize more accurate programs as well as achieve

reasonable performance when fewer demonstrations are given. On the contrary, Induction baseline could

not exploit more than 10 demonstrations well.

29

Figure 2.7: Generalization over different number of Kseen. The baseline models and our model trained with
25 seen demonstration are evaluated with fewer or more seen demonstrations.

2.5.5.4 Debugging the Synthesized Program

One of the intriguing properties of the program synthesis is that synthesized programs are interpretable

and interactable by human. This makes it possible to debug a synthesized program and fix minor mistakes

to correct the behaviors. To verify this idea, we use edit distance between synthesized program and ground

truth program as a number of minimum token that is required to get a exactly correct program. With this

setting, we found that fixing at most 2 program token provides 4.9% improvement in sequence accuracy

and 4.1% improvement in execution accuracy.

2.6 Conclusion

We propose the task of synthesizing a program from diverse demonstration videos. To address this, we

introduce a model augmented with a summarizer module to deal with branching conditions and a multi-task

objective to induce meaningful latent representations. Our method is evaluated on a fully observable,

third-person environment (Karel environment) and a partially observable, egocentric game (ViZDoom

environment). The experiments demonstrate that the proposed model is able to reliably infer underlying

programs and achieve satisfactory performances.

30

2.7 Appendix

2.7.1 Detailed Network Architectures

2.7.1.1 Demonstration Encoder

The demonstration encoder consists of a stack of convolutional layers and an LSTM. The stack of convolu-

tional layers consists of five layers, which can be represented as:

C{3,2,16} → C{3,2,32} → C{3,2,48} → C{3,2,48} → C{3,2,48},

where Ck,s,n denotes a convolutional layer with a kernel size k, stride s, and a number of channel n. Then

the encoded feature maps are flatten and passed to an LSTM. We experiment with RNN, GRU, and LSTM

and found that LSTM works the best.

2.7.1.2 Summarizer Module

For the relation network of the summarizer module, we use two fully-connected layers with LeakyReLU

activation. We also experiment with RNN, GRU, and LSTM for summarizer module and found that LSTM

works the best.

2.7.1.3 Program Decoder

For the token embedding function used to produce embedding vectors of program tokens, we create an

embedding lookup with a hidden size of 128. An LSTM with a hidden size of 512 is utilized to decode

program tokens.

31

2.7.2 Training Details

We implement the proposed model and its submodules described in the main paper in TensorFlow [1] and

trained it using batch size of 32 with Adam optimizer [140].

2.7.3 One-shot Imitation Learning Baseline

To evaluate the effectiveness of our proposed model, we implement an One-shot imitation learning model

proposed in [69]. Since the model proposed in the original paper is not able to

1. Incorporate multiple seen specification demonstration sequences

2. Handle a varying-length number of demonstrations

3. Deal with visual input

we make modifications as follows:

1. Augment the demonstration encoder with a stack of convolutional layers to process visual input

2. Remove temporal dropout, temporal convolution, and neighborhood attention

3. Add an LSTMwith an attentionmechanism [178]. We also experimented with themonotonic attention

mechanism [241] and empirically found [178] works better.

4. Replace the context network with an average pooling layer to handle a varying-length number of

demonstrations

5. Change the manipulation network to an LSTM decoder, which optimizes the predictions of one-hot

action vectors at each time step

32

2.7.4 Dataset Details

2.7.4.1 Karel

We use 5 action primitives and 5 perception primitives for Karel, which is formally defined as follows:

action := move | turnRight | turnLeft | pickMarker

| putMarker

perception := frontIsClear | leftIsClear | rightIsClear

| markersPresent | noMarkersPresent

For Karel environment, we use 8 × 8 × 16 state representation, where each channel of the state

representation has its own meaning.

0 : agent facing north | 1 : agent facing south∥

2 : agent facing west | 3 : agent facing east |

4 : wall or empty | 5 ∼ 15 : 0 ∼ 10markers

33

2.7.4.2 ViZDoom

ViZDoom model contains 7 action primitives and 6 perception primitives, which is formally defined as

follows:

action := moveBackward | moveForward | moveLeft

| moveRight | turnLeft | turnRight |attack

perception := isThere m | inTargetm

monsterm := demon | hellKnight | revenant

ViZDoom environment has 120× 160× 3 image as a state representation. We resize them to 80× 80× 3

to feed to our model as an input.

To generate meaningful program and collecting diverse behavior we use heuristics to sample codes and

demonstrations. Given each state we sequentially increase the program length by adding more statement.

At the same time action is instantly taken to the environment and state transition is performed. Whenever

statement with condition is sampled for the program, we give higher sampling probability to perception

that makes current state more diverse.

34

Chapter 3

Learning to Synthesize Programs from Reward Functions

3.1 Introduction

Recently, deep reinforcement learning (DRL) methods have demonstrated encouraging performance on a

variety of domains such as outperforming humans in complex games [200, 276, 277, 310] or controlling

robots [39, 98, 15, 105, 334, 348, 159]. Despite the recent progress in the field, acquiring complex skills

through trial and error still remains challenging and these neural network policies often have difficulty

generalizing to novel scenarios. Moreover, such policies are not interpretable to humans and therefore are

difficult to debug when these challenges arise.

To address these issues, a growing body of work aims to learn programmatic policies that are structured

in more interpretable and generalizable representations such as decision trees [25], state-machines [123],

and programs described by domain-specific programming languages [308, 307]. Yet, the programmatic

representations employed in these works are often limited in expressiveness due to constraints on the

policy spaces. For example, decision tree policies are incapable of naïvely generating repetitive behaviors,

state machine policies used in [123] are computationally complex to scale to policies representing diverse

behaviors, and the programs of [308, 307] are constrained to a set of predefined program templates. On

35

the other hand, program synthesis works that aim to represent desired behaviors using flexible domain-

specific programs often require extra supervision such as input/output pairs [63, 35, 46, 273, 155] or expert

demonstrations [287, 55], which can be difficult to obtain.

In this paper, we present a framework to instead synthesize human-readable programs in an expressive

representation, solely from rewards, to solve tasks described by Markov Decision Processes (MDPs).

Specifically, we represent a policy using a program composed of control flows (e.g. if/else and loops) and

an agent’s perceptions and actions. Our programs can flexibly compose behaviors through perception-

conditioned loops and nested conditional statements. However, composing individual program tokens (e.g.

if, while, move()) in a trial-and-error fashion to synthesize programs that can solve given MDPs can be

extremely difficult and inefficient.

To address this problem, we propose to first learn a latent program embedding space where nearby

latent programs correspond to similar behaviors and allows for smooth interpolation, together with a

program decoder that can decode a latent program to a program consisting of a sequence of program

tokens. Then, when a task is given, this embedding space allows us to iteratively search over candidate

latent programs to find a program that induces desired behavior to maximize the reward. Specifically, this

embedding space is learned through reconstruction of randomly generated programs and the behaviors

they induce in the environment in an unsupervised manner. Once learned, the embedding space can be

reused to solve different tasks without retraining.

To evaluate the proposed framework, we consider the Karel domain [226], featuring an agent navigating

through a gridworld and interacting with objects to solve tasks such as stacking and navigation. The

experimental results demonstrate that the proposed framework not only learns to reliably synthesize

task-solving programs but also outperforms program synthesis and deep RL baselines. In addition, we

justify the necessity of the proposed two-stage learning scheme as well as conduct an extensive analysis

comparing various approaches for learning the latent program embedding spaces. Finally, we perform

36

experiments which highlight that the programs produced by our proposed framework can both generalize

to larger state spaces and unseen state configurations as well as be interpreted and edited by humans to

improve their task performance.

3.2 Related Work

Neural program induction and synthesis. Program induction methods [155, 332, 61, 208, 95, 132, 89,

247, 38, 329, 37, 335, 168, 120] aim to implicitly induce the underlying programs to mimic the behaviors

demonstrated in given task specifications such as input/output pairs or expert demonstrations. On the

other hand, program synthesis methods [63, 35, 46, 273, 287, 31, 219, 273, 175, 171, 169, 75, 76, 24, 173, 3,

117, 278, 328, 44, 5, 48, 18, 117, 327, 47, 215] explicitly synthesize the underlying programs and execute the

programs to perform the tasks from task specifications such input/output pairs, demonstrations, language

instructions. In contrast, we aim to learn to synthesize programs solely from reward described by an MDP

without other task specifications. Similarly to us, a two-stage synthesis method is proposed in [173]. Yet,

the task is to match truth tables for given test programs rather than solve MDPs. Their first stage requires

the entire ground-truth table for each program synthesized during training, which is infeasible to apply to

our problem setup (i.e. synthesizing imperative programs for solving MDPs).

Learning programmatic policies. Prior works have also addressed the problem of learning program-

matic policies [52, 326, 154]. Bastani, Pu, and Solar-Lezama [25] learns a decision tree as a programmatic

policy for pong and cartpole environments by imitating an oracle neural policy. However, decision trees are

incapable of representing repeating behaviors on their own. Silver et al. [278] addresses this by including a

loop-style token for their decision tree policy, though it is still not as expressive as synthesized loops. Inala

et al. [123] learns programmatic policies as finite state machines by imitating a teacher policy, although

finite state machine complexity can scale quadratically with the number of states, making them difficult to

scale to more complex behaviors.

37

Program ρ := DEF run m(s m)

Repetition n := Number of repetitions
Perception h := Domain-dependent perceptions
Condition b := perception h | not perception h

Action a := Domain-dependent actions
Statement s := while c(b c) w(s w) | s1; s2 | a |

repeat R=n r(s r) | if c(b c) i(s i) |
ifelse c(b c) i(s1 i) else e(s2 e)

Figure 3.1: The domain specific language (DSL) for constructing programs.

Another line of work instead synthesizes programs structured in Domain-Specific Languages (DSLs),

allowing humans to design tokens (e.g. conditions and operations) and control flows (e.g. while loops, if

statements, reusable functions) to induce desired behaviors and can produce human interpretable programs.

Verma et al. [308, 307] distill neural network policies into programmatic policies. Yet, the initial programs

are constrained to a set of predefined program templates. This significantly limits the scope of synthesizable

programs and requires designing such templates for each task. In contrast, our method can synthesize

diverse programs, without templates, which can flexibly represent the complex behaviors required to solve

various tasks.

3.3 Problem Formulation

We are interested in learning to synthesize a program structured in a given DSL that can be executed

to solve a given task described by an MDP, purely from reward. In this section, we formally define our

definition of a program and DSL, tasks described by MDPs, and the problem formulation.

Program and Domain-Specific Language. The programs, or programmatic policies, considered in this

work are defined based on a DSL as shown in Figure 3.1. The DSL consists of control flows and an agent’s

38

perceptions and actions. A perception indicates circumstances in the environment (e.g. frontIsClear())

that can be perceived by an agent, while an action defines a certain behavior that can be performed by an

agent (e.g. move(), turnLeft()). Control flow includes if/else statements, loops, and boolean/logical

operators to compose more sophisticated conditions. A policy considered in this work is described by a

program ρ which is executed to produce a sequence of actions given perceptions from the environment.

MDP. We consider finite-horizon discounted MDPs with initial state distribution µ(so) and discount factor

γ. For a fixed sequence {(s0, a0), ..., (st, at)} of states and actions obtained from a rollout of a given policy,

the performance of the policy is evaluated based on a discounted return
∑T

t=0 γ
trt, where T is the horizon

of the episode and rt = R(st, at) the reward function.

Objective. Our objective ismaxρ Ea∼EXEC(ρ),s0∼µ[
∑T

t=0 γ
trt], where EXEC returns the actions induced by

executing a program policy ρ in the environment. Note that one can view this objective as a special case of

the standard RL objective, where the policy is represented as a program which follows the grammar of the

DSL and the policy rollout is obtained by executing the program.

3.4 Approach

Our goal is to develop a framework that can synthesize a program (i.e. a programmatic policy) structured in

a given DSL that can be executed to solve a task of interest. This requires the ability to synthesize a program

that is not only valid for execution (e.g. grammatically correct) but also describes desired behaviors for

solving the task from only the reward. Yet, learning to synthesize such a program from scratch for every

new task can be difficult and inefficient.

To this end, we propose our Learning Embeddings for lAtent Program Synthesis framework, dubbed

LEAPS, as illustrated in Figure 3.2. LEAPS first learns a latent program embedding space that continuously

parameterizes diverse behaviors and a program decoder that decodes a latent program to a program

consisting of a sequence of program tokens. Then, when a task is given, we iteratively search over this

39

Latent
Program z

Program ⇢

(a) Learning Program Embedding Stage (b) Latent Program Search Stage

def run():
if frontIsClear():

move()
else:

turnLeft()

def run():
if frontIsClear():

move()
else:

turnLeft()

Environment

Execute

Environment

Execute

Cross Entropy Method

Sample

Next

Candidate

Latent Programs

Noise

+

Candidate

Latent Program

def run():
if frontIsClear():

move()
else:

turnLeft()

Predicted

ProgramEnvironment

r s

a

LP

LR

Reconstructed

Program ⇢̂

LL

Figure 3.2: (a) Learning program embedding stage: we propose to learn a program embedding space
by training a program encoder qϕ that encodes a program as a latent program z, a program decoder pθ
that decodes the latent program z back to a reconstructed program ρ̂, and a policy π that conditions on
the latent program z and acts as a neural program executor to produce the execution trace of the latent
program z. The model optimizes a combination of a program reconstruction loss LP, a program behavior
reconstruction loss LR, and a latent behavior reconstruction loss LL. a1, a2, .., at denotes actions produced
by either the policy π or program execution. (b) Latent program search stage: we use the Cross Entropy
Method to iteratively search for the best candidate latent programs that can be decoded and executed to
maximize the reward to solve given tasks.

embedding space and decode each candidate latent program using the decoder to find a program that

maximizes the reward. This two-stage learning scheme not only enables learning to synthesize programs

to acquire desired behaviors described by MDPs solely from reward, but also allows reusing the learned

embedding space to solve different tasks without retraining.

In the rest of this section, we describe how we construct the model and our learning objectives for the

latent program embedding space in Section 3.4.1. Then, we present how a program that describes desired

behaviors for a given task can be found through a search algorithm in Section 3.4.2.

3.4.1 Learning a Program Embedding Space

To learn a latent program embedding space, we propose to train a variational autoencoder (VAE) [141] that

consists of a program encoder qϕ which encodes a program ρ to a latent program z and a program decoder

40

pθ which reconstructs the program from the latent. Specifically, the VAE is trained through reconstruction

of randomly generated programs and the behaviors they induce in the environment in an unsupervised

manner. Architectural details are listed in Section 3.7.12.6.

Since we aim to iteratively search over the learned embedding space to achieve certain behaviors when

a task is given, we want this embedding space to allow for smooth behavior interpolation (i.e. programs

that exhibit similar behaviors are encoded closer in the embedding space). To this end, we propose to train

the model by optimizing the following three objectives.

3.4.1.1 Program Reconstruction

To learn a program embedding space, we train a program encoder qϕ and a program decoder pθ to reconstruct

programs composed of sequences of program tokens. Given an input program ρ consisting of a sequence

of program tokens, the encoder processes the input program one token at a time and produces a latent

program embedding z. Then, the decoder outputs program tokens one by one from the latent program

embedding z to synthesize a reconstructed program ρ̂. Both the encoder and the decoder are recurrent

neural networks and are trained to optimize the β-VAE [113] loss:

LPθ,ϕ(ρ) = −Ez∼qϕ(z|ρ)[log pθ(ρ|z)] + βDKL(qϕ(z|ρ)∥pθ(z)). (3.1)

3.4.1.2 Program Behavior Reconstruction

While the loss in Equation 3.1 enforces that the model encodes syntactically similar programs close to

each other in the embedding space, we also want to encourage programs with the same semantics to have

similar program embeddings. An example that demonstrates the importance of this is the program aliasing

issue, where different programs have identical program semantics (e.g. repeat(2): move() and move()

move()). Thus, we introduce an objective that compares the execution traces of the input program and the

41

reconstructed program. Since the program execution process is not differentiable, we optimize the model

via REINFORCE [325]:

LRθ,ϕ(ρ) = −Ez∼qϕ(z|ρ)[Rmat(pθ(ρ|z), ρ)], (3.2)

where Rmat(ρ̂, ρ), the reward for matching the input program’s behavior, is defined as

Rmat(ρ̂, ρ) = Eµ[
1

N

N∑

t=1

1{EXECi(ρ̂) == EXECi(ρ) ∀i = 1, 2, ...t}︸ ︷︷ ︸
stays 0 after the first t where EXECt(ρ̂) != EXECt(ρ)

], (3.3)

whereN is the maximum of the lengths of the execution traces of both programs, and EXECi(ρ) represents

the action taken by program ρ at time i. Thus this objective encourages the model to embed behaviorally

similar yet possibly syntactically different programs to similar latent programs.

3.4.1.3 Latent Behavior Reconstruction

To further encourage learning a program embedding space that allows for smooth behavior interpolation,

we devise another source of supervision by learning a program embedding-conditioned policy. Denoted

π(a|z, st), this recurrent policy takes the program embedding z produced by the program encoder and

learns to predict corresponding agent actions. One can view this policy as a neural program executor that

allows gradient propagation through the policy and the program encoder by optimizing the cross entropy

between the actions obtained by executing the input program ρ and the actions predicted by the policy:

LLπ(ρ, π) = −Eµ[

M∑

t=1

|A|∑

i=1

1{EXECi(ρ̂) == EXECi(ρ)} log π(ai|z, st)], (3.4)

whereM denotes the length of the execution of ρ. Optimizing this objective directly encourages the program

embeddings, through supervised learning instead of RL as in LR, to be useful for action reconstruction,

thus further ensuring that similar behaviors are encoded together and allowing for smooth interpolation.

42

Note that this policy is only used for improving learning the program embedding space not for solving the

tasks of interest in the later stage.

In summary, we propose to optimize three sources of supervision to learn the program embedding

space that allows for smooth interpolation and can be used to search for desired agent behaviors: (1) LP

(Equation 3.1), the β-VAE objective for program reconstruction, (2) LR (Equation 3.2), an RL environment-

state matching loss for the reconstructed program, and (3) LL (Equation 3.4), a supervised learning loss to

encourage predicting the ground-truth agent action sequences. Thus our combined objective is:

min
θ,ϕ,π

λ1LPθ,ϕ(ρ) + λ2LRθ,ϕ(ρ) + λ3LLπ(ρ, π), (3.5)

where λ1, λ2, and λ3 are hyperparameters controlling the importance of each loss. Optimizing the com-

bination of these losses encourages the program embedding to be both semantically and syntactically

informative. More training details can be found in Section 3.7.12.6.

3.4.2 Latent Program Search: Synthesizing a Task-Solving Program

Once the program embedding space is learned, our goal becomes searching for a latent program that

maximizes the reward described by a given task MDP. To this end, we adapt the Cross Entropy Method

(CEM) [253], a gradient-free continuous search algorithm, to iteratively search over the program embedding

space. Specifically, we (1) sample a distribution of latent programs, (2) decode the sampled latent programs

into programs using the learned program decoder pθ, (3) execute the programs in the task environment

and obtain the corresponding rewards, and (4) update the CEM sampling distribution based on the rewards.

This process is repeated until either convergence or the maximum number of sampling steps has been

reached.

43

stairClimber

(a) StairClimber

fourCorners

(b) FourCorner

topOff

(c) TopOff

maze

(d) Maze

cleanHouse

(e) CleanHouse

harvester

(f) Harvester

Figure 3.3: The Karel problem set: the domain features an agent navigating through a gridworld with
walls and interacting with markers, allowing for designing tasks that demand certain behaviors. The tasks
are further described in Section 3.7.11 with visualizations in Figure 3.18.

3.5 Experiments

We first introduce the environment and the tasks in Section 3.5.1 and describe the experimental setup

in Section 3.5.2. Then, we justify the design of LEAPS by conducting extensive ablation studies in Section

3.5.3. We describe the baselines used for comparison in Section 3.5.4, followed by the experimental

results presented in Section 3.5.5. In Section 3.5.6, we conduct experiments to evaluate the ability of our

method to generalize to a larger state space without further learning. Finally, we investigate how LEAPS’

interpretability can be leveraged by conducting experiments that allow humans to debug and improve the

programs synthesized by LEAPS in Section 3.5.7

3.5.1 Karel Domain

To evaluate the proposed framework, we consider the Karel domain [226], as featured in [35, 273, 287],

which features an agent navigating through a gridworld with walls and interacting with markers. The

agent has 5 actions for moving and interacting with marker and 5 perceptions for detecting obstacles and

markers. The tasks of interest are shown in Figure 3.3. Note that most tasks have randomly sampled agent,

wall, marker, and/or goal configurations. When either training or evaluating, we randomly sample initial

configurations upon every episode reset. More details can be found in Section 3.7.11.

44

3.5.2 Programs

To produce programs for learning the program embedding space, we randomly generated a dataset of 50,000

unique programs. Note that the programs are generated independently of any Karel tasks; each program is

created only by sampling tokens from the DSL, similar to the procedures used in [63, 35, 46, 273, 287, 55].

This dataset is split into a training set with 35,000 programs a validation set with 7,500 programs, and a

testing set with 7,500 programs. The validation set is used to select the learned program embedding space

to use for the program synthesis stage.

For each program, we sample random Karel states and execute the program on them from different

starting states to obtain 10 environment rollouts to compute the program behavior reconstruction loss LR

and the latent behavior reconstruction loss LL when learning the program embedding space. We perform

checks to ensure rollouts cover all execution branches in the program so that they are representative of

all aspects of the program’s behavior. The maximum length of the programs is 44 tokens and the average

length is 17.9. We plot a histogram of their lengths in Figure 3.17 (in Appendix). More dataset generation

details can be found in Section 3.7.10.

3.5.3 Ablation Study

We first ablate various components of our proposed framework in order to (1) justify the necessity of the

proposed two-stage learning scheme and (2) identify the effects of the proposed objectives. We consider

the following baselines and ablations of our method (illustrated Section 3.7.9).

• Naïve: a program synthesis baseline that learns to directly synthesize a program from scratch by

recurrently predicting a sequence of program tokens. This baseline investigates if an end-to-end

learning method can solve the problem. More details can be found in Section 3.7.12.4.

45

• LEAPS-P: the simplest ablation of LEAPS, in which the program embedding space is learned by only

optimizing the program reconstruction loss LP (Equation 3.1).

• LEAPS-P+R: an ablation of LEAPSwhich optimizes both the program reconstruction lossLP (Equation

3.1) and the program behavior reconstruction loss LR (Equation 3.2).

• LEAPS-P+L: an ablation of LEAPS which optimizes both the program reconstruction lossLP (Equation

3.1) and the latent behavior reconstruction loss LL (Equation 3.4).

• LEAPS (LEAPS-P+R+L): LEAPS with all the losses, optimizing our full objective in Equation 3.5.

• LEAPS-rand-{8/64}: similar to LEAPS, this ablation also optimizes the full objective (Equation 3.5)

for learning the program embedding space. Yet, when searching latent programs, instead of CEM,

it simply randomly samples 8/64 candidate latent programs and chooses the best performing one.

These baselines justify the effectiveness of using CEM for searching latent programs.

Table 3.1: Program behavior reconstruction rewards (standard deviations) across all methods.

WHILE IFELSE+WHILE 2IF+IFELSE WHILE+2IF+IFELSE Avg Reward
Naïve 0.65 (0.33) 0.83 (0.07) 0.61 (0.33) 0.16 (0.06) 0.56

LEAPS-P 0.95 (0.13) 0.82 (0.08) 0.58 (0.35) 0.33 (0.17) 0.67
LEAPS-P+R 0.98 (0.09) 0.77 (0.05) 0.63 (0.25) 0.52 (0.27) 0.72
LEAPS-P+L 1.06 (0.00) 0.84 (0.10) 0.77 (0.23) 0.33 (0.13) 0.75

LEAPS-rand-8 0.62 (0.24) 0.49 (0.09) 0.36 (0.18) 0.28 (0.14) 0.44
LEAPS-rand-64 0.78 (0.22) 0.63 (0.09) 0.55 (0.20) 0.37 (0.09) 0.58

LEAPS 1.06 (0.08) 0.87 (0.13) 0.85 (0.30) 0.57 (0.23) 0.84

Program Behavior Reconstruction. To determine the effectiveness of the proposed two-stage

learning scheme and the learning objectives, we measure how effective each ablation is at reconstructing

the behaviors of input programs. We use programs from the test set (shown in Figure 3.11 in Appendix), and

utilize the environment state matching reward Rmat(ρ̂, ρ) (Equation 3.3), with a 0.1 bonus for synthesizing

a syntactically correct program. Thus the return ranges between [0, 1.1]. We report the mean cumulative

return, over 5 random seeds, of the final programs after convergence.

46

The results are reported in Table 3.1. Each test is named after its control flows (e.g. IFELSE+WHILE

has an if-else statement and a while loop). The naïve program synthesis baseline fails on the complex

WHILE+2IF+IFELSE program, as it rarely synthesizes conditional and loop statements, instead generating

long sequences of action tokens that attempt to replicate the desired behavior of those statements (see

synthesized programs in Figure 3.12). We believe that this is because it is incentivized to initially predict

action tokens to gain more immediate reward, making it less likely to synthesize other tokens. LEAPS and

its variations perform better and synthesize more complex programs, demonstrating the importance of

the proposed two-stage learning scheme in biasing program search. We also note that LEAPS-P achieves

the worst performance out of the CEM search LEAPS ablations, indicating that optimizing the program

reconstruction loss LP (the VAE loss) alone does not yield satisfactory results. Jointly optimizing LP with

either the program behavior reconstruction loss LR or the latent behavior reconstruction loss LL improves

the performance, and optimizing our full objective with all three achieves the best performance across all

tasks, indicating the effectiveness of the proposed losses. Finally, LEAPS outperforms LEAPS-rand-8/64,

suggesting the necessity of adopting better search algorithms such as CEM.

Table 3.2: Program embedding space smoothness. For
each program, we execute the ten nearest programs in
the learned embedding space of each model to calculate
the mean state-matching reward Rmat against the original
program. We report Rmat averaged over all programs in
each dataset.

LEAPS-P LEAPS-P+R LEAPS-P+L LEAPS

Training 0.22 0.22 0.31 0.31

Validation 0.22 0.21 0.27 0.27

Testing 0.22 0.22 0.28 0.27

Program Embedding Space Smoothness.

We investigate if the program and latent behavior

reconstruction losses encourage learning a behavio-

rially smooth embedding space. To quantify behav-

ioral smoothness, we measure how much a change

in the embedding space corresponds to a change

in behavior by comparing execution traces. For all

programs we compute the pairwise Euclidean dis-

tance between their embeddings in each model. We then calculate the environment state matching distance

Rmat between the decoded programs by executing them from the same initial state.

47

The results are reported in Table 3.2. LEAPS and LEAPS-P+L perform the best, suggesting that optimizing

the latent behavior reconstruction objective LL, in Equation 3.4, is essential for improving the smoothness

of the latent space in terms of execution behavior. We further analyze and visualize the learned program

embedding space in Section 3.7.1 and Figure 3.4 (in Appendix).

3.5.4 Baselines

We evaluate LEAPS against the following baselines (illustrated in Figure 3.16 in Appendix Section 3.7.9).

• DRL: a neural network policy trained on each task and taking raw states (Karel grids) as input.

• DRL-abs: a recurrent neural network policy directly trained on each Karel task but taking abstract

states as input (i.e. it sees the same perceptions as LEAPS, e.g. frontIsClear()==true).

• DRL-abs-t: a DRL transfer learning baseline in which for each task, we train DRL-abs policies on all

other tasks, then fine-tune them on the current task. Thus it acquires a prior by learning to first solve

other Karel tasks. Rewards are reported for the policies from the task that transferred with highest

return. We only transfer DRL-abs policies as some tasks have different state spaces.

• HRL: a hierarchical RL baseline in which a VAE is first trained on action sequences from program

execution traces used by LEAPS. Once trained, the decoder is utilized as a low-level policy for learning

a high-level policy to sample actions from. Similar to LEAPS, this baseline utilizes the dataset to

produce a prior of the domain. It takes raw states (Karel grids) as input.

• HRL-abs: the same method as HRL but taking abstract states (i.e. local perceptions) as input.

• VIPER [25]: A decision-tree programmatic policy which imitates the behavior of a deep RL teacher

policy via a modified DAgger algorithm [251]. This decision tree policy cannot synthesize loops,

allowing us to highlight the performance advantages of more expressive program representation that

LEAPS is able to take advantage of.

48

Table 3.3: Mean return (standard deviation) of all methods across Karel tasks, evaluated over 5 random
seeds. DRL methods, program synthesis baselines, and LEAPS ablations are separately grouped.

StairClimber FourCorner TopOff Maze CleanHouse Harvester
DRL 1.00 (0.00) 0.29 (0.05) 0.32 (0.07) 1.00 (0.00) 0.00 (0.00) 0.90 (0.10)

DRL-abs 0.13 (0.29) 0.36 (0.44) 0.63 (0.23) 1.00 (0.00) 0.01 (0.02) 0.32 (0.18)
DRL-abs-t 0.00 (0.00) 0.05 (0.10) 0.17 (0.11) 1.00 (0.00) 0.01 (0.02) 0.16 (0.18)

HRL -0.51 (0.17) 0.01 (0.00) 0.17 (0.11) 0.62 (0.05) 0.01 (0.00) 0.00 (0.00)
HRL-abs -0.05 (0.07) 0.00 (0.00) 0.19 (0.12) 0.56 (0.03) 0.00 (0.00) -0.03 (0.02)

Naïve 0.40 (0.49) 0.13 (0.15) 0.26 (0.27) 0.76 (0.43) 0.07 (0.09) 0.21 (0.25)
VIPER 0.02 (0.02) 0.40 (0.42) 0.30 (0.06) 0.69 (0.05) 0.00 (0.00) 0.51 (0.07)

LEAPS-rand-8 0.10 (0.17) 0.10 (0.14) 0.28 (0.05) 0.40 (0.50) 0.00 (0.00) 0.07 (0.06)
LEAPS-rand-64 0.18 (0.40) 0.20 (0.11) 0.33 (0.07) 0.58 (0.41) 0.03 (0.06) 0.12 (0.05)

LEAPS 1.00 (0.00) 0.45 (0.40) 0.81 (0.07) 1.00 (0.00) 0.18 (0.14) 0.45 (0.28)

All the baselines are trained with PPO [265] or SAC [104], including the VIPER teacher policy. More

training details can be found in Section 3.7.12.

3.5.5 Results

We present the results of the baselines and our method evaluated on the Karel task set based on the

environment rewards in Table 3.3. The reward functions are sparse for all tasks, and are normalized such

that the final cumulative return is within [−1, 1] for tasks with penalties and [0, 1] for tasks without; reward

functions for each task are detailed in Section 3.7.11.

Overall Task Performance. Across all but one task, LEAPS yields the best performance. The LEAPS-

rand baselines perform significantly worse than LEAPS on all Karel tasks, demonstrating the need for

using a search algorithm like CEM during synthesis. The performance of VIPER is bounded by its RL

teacher policy, and therefore is outperformed by the DRL baselines on most of the tasks. Meanwhile,

DRL-abs-t is generally unable to improve upon DRL-abs across the board, suggesting that transferring Karel

behaviors with RL from one task to another is ineffective. Furthermore, both the HRL baselines achieve

poor performance, likely because agent actions alone provide insufficient supervision for a VAE to encode

useful action trajectories on unseen tasks—unlike programs. Finally, the poor performance of the naïve

49

program synthesis baseline highlights the difficulty and inefficiency of learning to synthesize programs

from scratch using only rewards. In the appendix, we present programs synthesized by LEAPS in Figure

3.14, example optimal programs for each task in Section 3.7.6 (Figure 3.11), rollout visualizations in Figure

3.19, and additional results analysis in Section 3.7.8.

Repetitive Behaviors. Solving StairClimber and FourCorner requires acquiring repetitive (or

looping) behaviors. StairClimber, which can be solved by repeating a short, 4-step stair-climbing behavior

until the goal marker is reached, is not solved by DRL-abs. LEAPS fully solves the task given the same

perceptions, as this behavior can be simply represented with a while loop that repeats the stair-climbing skill.

However VIPER performs poorly as its decision tree cannot represent such loops. Similarly, the baselines

are unable to perform as well on FourCorner, a task in which the agent must pickup a marker located

in each corner of the grid. This behavior takes at least 14 timesteps to complete, but can be represented

by two nested loops. Similar to StairClimber, the bias introduced by the DSL and our generated dataset

(which includes nested loops), results in LEAPS being able to perform much better.

Exploration. TopOff rewards the agent for adding markers to locations with existing markers.

However, there are no restrictions for the agent to wander elsewhere around the environment, thus making

exploration a problem for the RL baselines, and thereby also constraining VIPER. LEAPS performs best on

this task, as the ground-truth program can be represented by a simple loop that just moves forward and

places markers when a marker is detected. Maze also involves exploration, however its small size (8× 8)

results in many methods, including LEAPS, solving the task.

Complexity. Solving Harvester and CleanHouse requires acquiring complex behaviors, resulting

in poor performance from all methods. CleanHouse requires an agent to navigate through a house and

pick up all markers along the walls on the way. This requires repeated execution of a skill, of varied

length, which navigates around the house, turns into rooms, and picks up markers. As such, all baselines

perform very poorly. However, LEAPS is able to perform substantially better because these behaviors

50

can be represented by a program of medium complexity with a while loop and some nested conditional

statements. On the other hand, Harvester involves simply navigating to and picking up a marker on every

spot on the grid. However, this is a difficult program to synthesize given our random dataset generation

process; the program we manually derive to solve Harvester is long and more syntactically complex than

most training programs. As a result, DRL and VIPER outperform LEAPS on this task.

Learned Program Embedding Space. More analysis on our learned program embedding space can be

found in the appendix. We present CEM search trajectory visualizations in Section 3.7.2, demonstrating how

the search population’s rewards change over time. To qualitatively investigate the smoothness of the learned

program embedding space, we linearly interpolate between pairs of latent programs and display their

corresponding decoded programs in Section 3.7.3. In Section 3.7.4, we illustrate how predicted programs

evolve over the course of CEM search.

3.5.6 Generalization

Table 3.4: Rewards on 100× 100 grids.

StairClimber Maze

DRL 0.00 (0.00) 0.00 (0.00)

DRL-abs 0.00 (0.00) 0.04 (0.05)

VIPER 0.00 (0.00) 0.10 (0.12)

LEAPS 1.00 (0.00) 1.00 (0.00)

We are also interested in learning whether the baselines and the

programs synthesized by LEAPS can generalize to novel scenarios

without further learning. Specifically, we investigate how well they

can generalize to larger state spaces. We expand both StairClimber

and Maze to 100× 100 grid sizes (from 12× 12 and 8× 8, respec-

tively). We directly evaluate the policies or programs obtained from

the original tasks with smaller state spaces for all methods except

DRL (its observation space changes), which we retrain from scratch. The results are shown in Table 3.4. All

baselines perform significantly worse than before on both tasks. On the contrary, the programs synthesized

by LEAPS for the smaller task instances achieve zero-shot generalization to larger task instances without

51

losing any performance. Larger grid size experiments for the other Karel tasks and additional unseen

configuration experiments can be found in Section 3.7.7.

3.5.7 Interpretability

Interpretability in machine learning [172, 271] is particularly crucial when it comes to learning a policy

that interacts with the environment [350, 112, 83, 106, 255, 29, 297, 17]. The proposed framework produces

programmatic policies that are interpretable from the following aspects as outlined in [271].

• Trust: interpretable machine learning methods and models may more easily be trusted since humans

tend to be reluctant to trust systems that they do not understand. Programs synthesized by LEAPS

can naturally be better trusted since one can simply read and interpret them.

• Contestability: the program execution traces produce a chain of reasoning for each action, providing

insights on the induced behaviors and thus allowing for contesting improper decisions.

• Safety: synthesizing readable programs allows for diagnosing issues earlier (i.e. before execution)

and provides opportunities to intervene, which is especially critical for safety-critical tasks.

In the rest of this section, we investigate how the proposed framework enjoys interpretability from the

three aforementioned aspects. Specifically, synthesized programs are not only readable to human users

but also interactive, allowing non-expert users with a basic understanding of programming to diagnose

and make edits to improve their performance. To demonstrate this, we asked non-expert humans to read,

interpret, and edit suboptimal LEAPS policies to improve their performance. Participants edited LEAPS

programs on 3 Karel tasks with suboptimal reward: TopOff, FourCorner, and Harvester. With just 3

edits, participants obtained a mean reward improvement of 97.1%, and with 5 edits, participants improved

it by 125%. This justifies how our synthesized policies can be manually diagnosed and improved, a property

which DRL methods lack. More details and discussion can be found in Section 3.7.5.

52

3.6 Discussion

We propose a framework for solving tasks described by MDPs by producing programmatic policies that

are more interpretable and generalizable than neural network policies learned by deep reinforcement

learning methods. Our proposed framework adopts a flexible program representation and requires only

minimal supervision compared to prior programmatic reinforcement learning and program synthesis

works. Our proposed two-stage learning scheme not only alleviates the difficulty of learning to synthesize

programs from scratch but also enables reusing its learned program embedding space for various tasks.

The experiments demonstrate that our proposed framework outperforms DRL and programmatic baselines

on a set of Karel tasks by producing expressive and generalizable programs that can consistently solve

the tasks. Ablation studies justify the necessity of the proposed two-stage learning scheme as well as the

effectiveness of the proposed learning objectives.

While the proposed framework achieves promising results, we would like to acknowledge two assump-

tions that are implicitly made in this work. First, we assume the existence of a program executor that

can produce execution traces of programs. This program executor needs to be able to return perceptions

from the environment state as well as apply actions to the environment. While this assumption is widely

made in program synthesis works, a program executor can still be difficult to obtain when it comes to

real-world robotic tasks. Fortunately, in research fields such as computer vision or robotics, a great amount

of effort has been put into satisfying this assumption such as designing modules that can return high-level

abstraction of raw sensory input (e.g. with object detection networks, proximity/tactile sensors, etc.).

Secondly, we assume that it is possible to generate a distribution of programs whose behaviors are

at least remotely related to the desired behaviors for solving the tasks of interest. It can be difficult to

synthesize programs which represent behaviors that are more complex than ones in the training program

distribution, although one possible solution is to employ a better program generation process to generate

programs that induce more complex behaviors. Also, the choice of DSL plays an important role in how

53

complex the programs can be. Ideally, employing a more complex DSL would allow our proposed framework

to synthesize more advanced agent behaviors.

In the future, we hope to extend the proposed framework to more challenging domains such real-world

robotics. We believe this framework would allow for deploying robust, interpretable policies for safety-

critical tasks such as robotic surgeries. One way to make LEAPS applicable to robotics domains would

be to simultaneously learn perception modules and action controllers. Other possible solutions include

incorporating program execution methods [11, 216, 288, 337, 160, 351] that are designed to allow program

execution or designing DSLs that allow pre-training of perception modules and action controllers. Also,

the proposed framework shares some characteristics with works in multi-task RL [216, 11, 295, 299, 281,

124, 232] and meta-learning [280, 315, 311, 77, 316, 45, 158, 212, 239, 49]. Specifically, it learns a program

embedding space from a distribution of tasks/programs. Once the program embedding space is learned, it

can be be reused to solve different tasks without retraining.

Yet, extending LEAPS to such domains can potentially lead to some negative societal impacts. For

example, our framework can still capture unintended bias during learning or suffer from adversarial attacks.

Furthermore, policies deployed in the real world can create great economic impact by causing job losses

in some sectors. Therefore, we would encourage further work to investigate the biases, safety issues, and

potential economic impacts to ensure that the deployment in the field does not cause far-reaching, negative

societal impacts.

3.7 Appendix

3.7.1 Program Embedding Space Visualizations

In this section, we present and analyze visualizations providing insights on the program embedding spaces

learned by LEAPS and its variations. To investigate the learned program embedding space, we perform

54

dimensionality reduction with PCA [130] to embed the following data to a 2D space for visualizations

shown in Figure 3.4:

• Latent programs from the training dataset encoded by a learned encoder qϕ, visualized as blue scatters.

There are 35k training programs.

• Samples drawn from a normal distribution N (0, 1), visualized as green scatters. This is to show

how a distribution would look like if the embedding space is learned by using a highly weighted

KL-divergence penalty (i.e. a large β value the VAE loss). We compared this against the latent program

distribution learned by our method to justify the effectiveness of the proposed objectives: the program

behavior reconstruction loss (LR) and the latent behavior reconstruction loss (LL).

• Ground-truth (GT) test programs from the testing dataset, encoded by a learned decoder qϕ, visualized

as plus signs (+) with different colors. We selected 4 test programs.

• Reconstructed programs which are predicted (Pred) by each method given visualized as crosses (×)

with different colors. Since there are 4 test programs selected, 4 reconstructed programs are visualized.

Each pair of test program and predicted program is visualized with the same color. These predicted

(i.e. synthesized) programs are also shown in Figure 3.12.

Embedding Space Coverage. Even though the testing programs are not in the training program dataset,

and therefore are unseen to models, their embedding vectors still lie in the distribution learned by all the

models. This indicates that the learned embedding spaces cover a wide distribution of programs.

Latent Program Distribution vs. Normal Distribution. We now compare two distributions: the latent

program distribution formed by encoding all the training programs to the program embedding space and a

normal distribution N (0, 1). One can view the normal distribution as the distribution obtained by heavily

enforcing the weight of the KL-divergence term when training a VAE model. We discuss the shape of the

latent program distribution in the learned program embedding space as follows:

55

• LEAPS-P: since LEAPS+P simply optimizes the β-VAE loss (the program reconstruction loss LP),

which puts a lot of emphasis on the KL-divergence term, the shape of the latent program distribution

is very similar to a normal distribution as shown in Figure 3.4 (a).

• LEAPS-P+R: while LEAPS+P+R additionally optimizes the program behavior reconstruction loss

LR, the shape of the latent program distribution is still similar to a normal distribution, as shown

in Figure 3.4 (b). We hypothesize that it is because the program behavior reconstruction loss alone

might not be strong or explicit enough to introduce a change.

• LEAPS-P+L: the shape of the latent program distribution in the program embedding space learned

by LEAPS+P+L is significantly different from a normal distribution, as shown in Figure 3.4 (c). This

suggest that employing the latent behavior reconstruction loss LL dramatically contributes to the

learning. We believe it is because the latent behavior reconstruction loss is optimized with direct

gradients and therefore provides a stronger learning signal especially compared to the program

behavior reconstruction loss LR, which is optimized using REINFORCE [325].

• LEAPS (LEAPS-P+R+L): LEAPS optimizes the full objective that includes all three proposed objectives

and form a similar distribution shape as the one learned by LEAPS+P+L. However, the distance

between each pair of the ground-truth testing program and the predicted program is much closer in

the program embedding space learned by LEAPS compared to the space learned by LEAPS+P+L. This

justifies the effectiveness of the proposed program behavior reconstruction loss LR, which can bring

the programs with similar behaviors closer in the embedding space.

Summary. The visualizations of the program embedding spaces learned by LEAPS and its ablations quali-

tatively justify the effectiveness of the proposed learning objectives, as complementary to the quantitative

results presented in the main paper.

56

3.7.2 Cross Entropy Method Trajectory Visualization

As described in the main paper, once the program embedding space is learned by LEAPS, our goal becomes

searching for a latent program that maximizes the reward described by a given task MDP. To this end, we

adapt the Cross Entropy Method (CEM) [253], a gradient-free continuous search algorithm, to iteratively

search over the program embedding space. Specifically, we iteratively perform the following steps:

1. Sample a distribution of candidate latent programs.

2. Decode the sampled latent programs into programs using the learned program decoder pθ .

3. Execute the programs in the task environment and obtain the corresponding rewards.

4. Update the CEM sampling distribution based on the rewards.

This process is repeated until either convergence or the maximum number of sampling steps has been

reached.

We perform dimensionality reduction with PCA [130] to embed the following data to a 2D space; the

visualizations of CEM trajectories are shown in Figure 3.5 and Figure 3.6:

• Latent programs from the training dataset encoded by a learned encoder qϕ, visualized as blue scatters.

There are 35k training programs. This is to visualize the shape of the program distribution in the

learned program embedding space. This is also visualized in Figure 3.4.

• Ground-truth (GT) programs that exhibit optimal behaviors for solving the Karel tasks, visualized as

red stars (⋆). Ideally, the CEM population should iteratively move toward where the GT programs are

located.

• CEM population is a batch of sampled candidate latent programs at each iteration, visualized as red

scatters. Each candidate latent program can be decoded as a program that can be executed in the

57

task environment to obtain a reward. By averaging the reward obtained by every candidate latent

program, we can calculate the average reward of this population and show it in the figures as Avg.

Reward.

• CEM Next Center, visualized as cross signs (×), indicates the center vector around which the next

batch of candidate latent programs will be sampled. This vector is calculated based on a set of

candidate latent programs that achieve best reward (i.e. elite samples) at each iteration. In this case,

it is a weighted average based on the reward each candidate gets from its execution.

From Figure 3.5, we observe that both the average reward of the entire population and the reward of

the next candidate program (CEM Next Center) consistently increase as the number of iterations increases,

justifying the effectiveness of CEM. Moreover, we observe that the CEM population gradually moves toward

where the ground-truth program is located, which aligns well with the fact that our proposed framework

can reliably synthesize task-solving programs.

Yet, the populations might not always exactly converge to where the ground-truth latent program is.

We hypothesize this could be attributed to the following reasons:

1. CEM convergence: while the CEM search converges, it can still be suboptimal. Since the search

terminates when the next candidate latent program obtains the maximum reward (1.1 as shown in

the figure) for 10 iterations, it might not exactly converge to where a ground-truth program is.

2. Dimensionality reduction: we visualized the trajectories and programs by performing dimensionality

reduction from 256 to 2 dimensions with PCA, which could cause visual distortions.

3. Suboptimal learned program embedding space: while we aim to learn a program embedding space

where all the programs inducing the same behaviors are mapped to the same spot in the embedding

space, it is still possible that programs that induce the desired behavior can distribute to more than one

58

Table 3.5: Decoded linear interpolations of programs close to each other in the latent space.

Latent Program Decoded Program

START DEF run m(turnRight move WHILE c(frontIsClear c) w(move w) WHILE c(not c(
frontIsClear c) c) w(move w) IF c(frontIsClear c) i(move i) m)

1 DEF run m(turnRight move WHILE c(frontIsClear c) w(move w) WHILE c(not c(
frontIsClear c) c) w(move w) IF c(frontIsClear c) i(move i) m)

2 DEF run m(turnRight move WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(move i) m)

3 DEF run m(turnRight move WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(move i) m)

4 DEF run m(turnRight move WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(move i) m)

5 DEF run m(turnRight move WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(move i) m)

6 DEF run m(turnRight move WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(move i) m)

7 DEF run m(turnRight move turnLeft WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(putMarker i) m)

8 DEF run m(turnRight move turnLeft WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(putMarker i) m)

END DEF run m(turnRight move turnLeft WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(putMarker i) m)

location in a learned program embedding space. Therefore, CEM search can converge to somewhere

that is different from the ground-truth latent program.

On the other hand, the CEM trajectory shown in Figure 3.6 does not converge and terminates when

reaching the maximum number of iterations. The ground-truth program lies far away from the initial

sampled distribution, which might contribute to the difficulty of converging. This aligns with the relatively

unsatisfactory performance achieved by LEAPS. Employing a more sophisticated searching algorithm or

conducting a more thorough hyperparameter search could potentially improve the performance but it is

not the main focus of this work.

3.7.3 Program Embedding Space Interpolations

To learn a program embedding space that allows for smooth interpolation, we propose three sources of

supervision. We aim to verify the effectiveness of it by investigating interpolations in the learned program

59

Table 3.6: Decoded linear interpolations of programs far from each other in the latent space.

Latent Program Decoded Program

START DEF run m(turnRight turnLeft turnLeft move turnRight putMarker move m)

1 DEF run m(turnRight turnLeft turnLeft move turnRight putMarker move m)

2 DEF run m(turnRight turnLeft turnLeft move WHILE c(frontIsClear c) w(putMarker w)
turnRight move m)

3 DEF run m(turnRight turnLeft move turnLeft WHILE c(frontIsClear c) w(putMarker w)
move m)

4 DEF run m(turnRight turnLeft move WHILE c(frontIsClear c) w(turnLeft w) IF c(not
c(frontIsClear c) c) i(move i) m)

5 DEF run m(turnRight move turnLeft WHILE c(frontIsClear c) w(move w) IF c(not c(
frontIsClear c) c) i(putMarker i) m)

6 DEF run m(move turnRight turnLeft move WHILE c(frontIsClear c) w(IF c(not c(
rightIsClear c) c) i(putMarker i) w) m)

7 DEF run m(move turnRight turnLeft move WHILE c(frontIsClear c) w(IF c(not c(
rightIsClear c) c) i(turnLeft i) w) m)

8 DEF run m(move turnRight move WHILE c(frontIsClear c) w(IF c(not c(rightIsClear
c) c) i(turnLeft i) w) m)

END DEF run m(move turnRight move WHILE c(frontIsClear c) w(IF c(not c(rightIsClear
c) c) i(turnLeft i) w) m)

embedding space. To this end, we follow the procedure described below to produce results shown in Table

3.5 and Table 3.6.

1. Sampling a pair of programs from the dataset (START program and END program).

2. Encoding the two programs into the learned program embedding space.

3. Linearly interpolating between the two latent programs to obtain a number of (eight) interpolated

latent programs.

4. Decoding the latent programs to obtain interpolated programs (program 1 to program 8).

We show two pairs of programs and their interpolations in between below as examples. Specifically, the

first pair of programs, shown in Table 3.5, are closer to each other in the latent space and the second pair of

programs, shown in Table 3.6, are further from each other. We observe that the interpolations between the

closer program pair exhibit smoother transitions and the interpolations between the further program pair

display more dramatic change.

60

3.7.4 Program Evolution

In this section, we aim to investigate how predicted programs evolve over the course of searching. We

visualize converged CEM search trajectories and the reward each program gets on the StairClimber task in

Appendix Figure 3.5. In Table 3.7, we present the predicted programs corresponding to the CEM search

trajectory on the StairClimber task in Figure 3.5. We observe that the sampled programs consistently

improve as the number of iterations increases, justifying the effectiveness of the learned program embedding

and the CEM search.

3.7.5 Interpretability: Human Debugging of LEAPS Programs

Interpretability in Machine Learning is crucial for several reasons [172, 271]. First, trust – interpretable

machine learning methods and models may more easily be trusted since humans tend to be reluctant to

trust systems that they do not understand. Second, interpretability can improve the safety of machine

learning systems. A machine learning system that is interpretable allows for diagnosing issues (e.g. the

distribution shift from training data to testing data) earlier and provides more opportunities to intervene.

This is especially important for safety-critical tasks such as medical diagnosis [22, 270, 92, 40, 279] and

real-world robotics [39, 98, 15, 105, 334, 348, 159] tasks. Finally, interpretability can lead to contestability,

by producing a chain of reasoning, providing insights on how a decision is made and therefore allowing

humans to contest unfair or improper decisions.

We believe interpretability is especially crucial when it comes to learning a policy that interacts with the

environment. In this work, we propose a framework that offers an effective way to acquire an interpretable

programmatic policy structured in a program. In the following, we discuss how the proposed framework

enjoys interpretability from the three aforementioned aspects. Programs synthesized by the proposed

framework can naturally be better trusted since one can simply read and understand them. Also, through

the program execution trace produced by executing a program, each decision made by the policy (i.e. the

61

Table 3.7: How predicted programs evolve throughout the course of CEM search for StairClimber. See
Figure 3.5 for the corresponding visualization of this CEM search.

Search Iteration Best Predicted Program
Iteration: 1 DEF run m(IF c(frontIsClear c) i(pickMarker i) WHILE c(leftIsClear c) w(move w) IFELSE

c(frontIsClear c) i(turnRight move i) ELSE e(move e) m)

Iteration: 2 DEF run m(WHILE c(markersPresent c) w(move w) IFELSE c(frontIsClear c) i(turnLeft i)
ELSE e(move e) WHILE c(leftIsClear c) w(move w) m)

Iteration: 3 DEF run m(WHILE c(not c(frontIsClear c) c) w(move turnRight w) WHILE c(leftIsClear c) w
(turnLeft move w) m)

Iteration: 4 DEF run m(WHILE c(not c(frontIsClear c) c) w(pickMarker move w) WHILE c(leftIsClear c)
w(turnLeft move w) m)

Iteration: 5 DEF run m(WHILE c(not c(frontIsClear c) c) w(pickMarker turnRight w) WHILE c(
leftIsClear c) w(move turnLeft w) m)

Iteration: 6 DEF run m(WHILE c(not c(frontIsClear c) c) w(pickMarker turnRight w) WHILE c(
leftIsClear c) w(move turnLeft w) m)

Iteration: 7 DEF run m(WHILE c(not c(leftIsClear c) c) w(turnRight w) IFELSE c(frontIsClear c) i(
move i) ELSE e(turnLeft e) WHILE c(rightIsClear c) w(move w) m)

Iteration: 8 DEF run m(WHILE c(not c(leftIsClear c) c) w(turnRight move w) WHILE c(markersPresent c)
w(turnLeft move w) m)

Iteration: 9 DEF run m(WHILE c(not c(noMarkersPresent c) c) w(turnRight move w) WHILE c(not c(
frontIsClear c) c) w(turnLeft move w) m)

Iteration: 10 DEF run m(WHILE c(not c(noMarkersPresent c) c) w(turnRight move w) WHILE c(leftIsClear
c) w(turnLeft move w) m)

Iteration: 11 DEF run m(WHILE c(not c(leftIsClear c) c) w(turnRight move w) WHILE c(noMarkersPresent
c) w(turnLeft move w) m)

Iteration: 12 DEF run m(WHILE c(not c(leftIsClear c) c) w(turnRight move w) WHILE c(noMarkersPresent
c) w(turnLeft move w) m)

Iteration: 13 DEF run m(WHILE c(not c(leftIsClear c) c) w(turnRight move w) WHILE c(noMarkersPresent
c) w(turnLeft move w) m)

Iteration: 14 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 15 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 16 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 17 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 18 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 19 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 20 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 21 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Iteration: 22 DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(move turnLeft w) m)

Converged DEF run m(WHILE c(not c(markersPresent c) c) w(turnRight move w) WHILE c(rightIsClear c
) w(turnLeft move w) m)

62

Table 3.8: Mean return (standard deviation) [% increase in performance] after debugging by non-expert
humans of LEAPS synthesized programs for 3 statement edits and 5 statement edits. Chosen LEAPS
programs are median-reward programs out of 5 LEAPS seeds for each task.

Karel Task Original Program 3 Edits 5 Edits

TopOff 0.86 0.95 (0.07) [10.5%] 1.0 (0.00) [16.3%]
FourCorner 0.25 0.75 (0.35) [200%] 0.92 (0.12) (268%)
Harvester 0.47 0.85 (0.05) [80.9%] 0.89 (0.00) [89.4%]

Average % Increase - 97.1% 125%

program) is traceable and therefore satisfies the contestability property. Finally, the programs produced by

our framework satisfy the safety property of interpretability as humans can diagnose and correct for issues

by reading and editing the programs.

Our synthesized programs are not only readable to human users but also interactable, allowing non-

expert users with a basic understanding of programming to diagnose and make edits to improve their

performance. To test this hypothesis, we asked people with programming experience who are unfamiliar

with our DSL or Karel tasks to edit suboptimal LEAPS programs to improve performance as much as possible

on 3 Karel tasks: TopOff, FourCorner, and Harvester through a user interface displayed in Figure 3.7.

Each person was given 1.5 hours (30 minutes per program), including time required to understand what

the LEAPS programs were doing, understand the DSL tokens, and fully debug/test their edited programs.

For each program, participants were required to modify up to 5 statements, then attempt the task again

with up to only 3 modifications as calculated by the Levenshtein distance metric [162]. A single statement

modification is defined as any modification/removal/addition of a IF, WHILE, IFELSE, REPEAT, or ELSE

statement, or a removal/addition/change of an action statement (e.g. move, turnLeft, etc.). Participants were

allowed to ask clarification questions, but we would not answer questions regarding how to specifically

improve the performance of their program.

We display example edited programs in Figure 3.8, and the aggregated results of editing in Table 3.8. We

see a significant increase in performance in all three tasks, with an average 97.1% increase in performance

with 3 edits and an average 125% increase in performance with 5. These numbers are averaged over 3 people,

63

with standard deviations reported in the table. Thus we see that even slight modifications to suboptimal

LEAPS programs can enable much better Karel task performance when edited by non-expert humans.

Our experiments in this section make an interesting connection to works in program/code repair (i.e.

automatic bug fixing) [341, 211, 129, 331, 93, 266, 146, 72, 166, 43, 324, 103, 320, 192], where the aim is to

develop algorithms and models that can find bugs or even repair programs without the intervention of a

human programmer. While the goal of these works is to fix programs produced by humans, our goal in this

section is to allow humans to improve programs synthesized by the proposed framework.

Another important benefit of programmatic policies is verifiability - the ability to verify different

properties of policies such as correctness, stability, smoothness, robustness, safety, etc. Since programmatic

policies are highly structured, they are more amenable to formal verification methods developed for

traditional software systems as compared to neural policies. Recent works [25, 308, 307, 352] show that

various properties of programmatic policies (programs written using DSLs, decision trees) can be verified

using existing verification algorithms, which can also be applied to programs synthesized by the proposed

framework.

3.7.6 Optimal and Synthesized Programs

In this section, we present the programs from the testing set which are selected for conducting ablation

studies in the main paper in Figure 3.11. Also, we manually write programs that induce optimal behaviors

to solve the Karel tasks and present them in Figure 3.11. Note that while we only show one optimal program

for each task, there exist multiple programs that exhibit the desired behaviors for each task. Then, we

analyze the program reconstructed by LEAPS, its ablations, and the naïve program synthesis baseline

in Section 3.7.6.1, and discuss the programs synthesized by LEAPS for Karel tasks in Section 3.7.6.2.

64

3.7.6.1 Program Behavior Reconstruction

This section serves as a complement to the ablation studies in the main paper, where we aim to justify the

effectiveness of the proposed framework and the learning objectives. To this end, we select programs that

are unseen to LEAPS and its ablations during the learning program embedding space from the testing set

and reconstruct those programs using LEAPS, its ablations and the naïve program synthesis baseline. Those

selected programs are shown in Figure 3.11 and the reconstructed programs are shown in Figure 3.12.

The naïve program synthesis baseline fails on the complexWHILE+2IF+IFELSE program, as it rarely

synthesizes conditional and loop statements, instead generating long sequences of action tokens that attempt

to replicate the desired behavior of those statements. We believe that this is because it is incentivized to

initially predict action tokens to gain more immediate reward, making it less likely to synthesize other

tokens. LEAPS and its variations perform better and synthesize more complex programs, demonstrating the

importance of the proposed two-stage learning scheme in biasing program search. Also, LEAPS synthesizes

programs that are more concise and induce behaviors which are more similar to given testing programs,

justifying the effectiveness of the proposed learning objectives.

3.7.6.2 Karel Environment Tasks

This section is complementary to the main experiments in the main paper, where we compare LEAPS

against the baselines on a set of Karel tasks, which is described in detail in Section 3.7.11. The programs

synthesized by LEAPS are presented in Figure 3.14.

The synthesized programs solve both StairClimber andMaze. For TopOff, since the average expected

number of markers presented in the last row is 3, LEAPS synthesizes a sub-optimal program that conducts

the topoff behavior three times. For CleanHouse, while all the baselines fail on this task, the synthesized

program achieves some performance by simply moving around and try to pick up markers. For Harvester,

65

Table 3.9: Extended reward comparison on original tasks with 8× 8 or 12× 12 grids and zero-shot generalization to
100× 100 grids. LEAPS achieves the best generalization performance on all the tasks except for Harvester.

StairClimber Maze FourCorner TopOff Harvester

DRL Original 1.00 (0.00) 1.00 (0.00) 0.29 (0.05) 0.32 (0.07) 0.90 (0.10)
100x100 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00)

DRL-abs Original 0.13 (0.29) 1.00 (0.00) 0.36 (0.44) 0.63 (0.23) 0.32 (0.18)
100x100 0.00 (0.00) 0.04 (0.05) 0.37 (0.44) 0.15 (0.12) 0.02 (0.01)

DRL-FCN Original 1.00 (0.00) 0.97 (0.03) 0.20 (0.34) 0.28 (0.12) 0.46 (0.16)
100x100 -0.20 (0.10) 0.01 (0.01) 0.00 (0.00) 0.01 (0.01) 0.02 (0.00)

VIPER Original 0.02 (0.02) 0.69 (0.05) 0.40 (0.42) 0.30 (0.06) 0.51 (0.07)
100x100 0.00 (0.00) 0.10 (0.12) 0.40 (0.42) 0.03 (0.00) 0.04 (0.00)

LEAPS Original 1.00 (0.00) 1.00 (0.00) 0.45 (0.40) 0.81 (0.07) 0.45 (0.28)
100x100 1.00 (0.00) 1.00 (0.00) 0.45 (0.37) 0.21 (0.03) 0.00 (0.00)

LEAPS fails to acquire the desired behavior that required nested loops but produces a sub-optimal program

that contains only action tokens.

3.7.7 Additional Generalization Experiments

Here, we present additional generalization experiments to complement those presented in Section 3.5.6.

In Section 3.7.7.1, we extend the 100x100 state size zero-shot generalization experiments to 3 additional

tasks. In Section 3.7.7.2, we analyze how well baseline methods and LEAPS can generalize to unseen

configurations of a given task.

3.7.7.1 Generalization on FourCorner, TopOff, and Harvester

Evaluating zero-shot generalization performance assumes methods to work reasonably well on the original

tasks. For this reason (and due to space limitations) we present only StairClimber and Maze for general-

ization experiments in the main text in Section 3.5.6 because most methods achieve reasonable performance

on these two tasks, with DRL and LEAPS both solving these tasks fully and DRL-abs solving Maze fully.

However, here we also present full results for all tasks except CleanHouse (as no method except

LEAPS has a reasonable level of performance on it). The results are summarized in Table 3.9. We see that

LEAPS generalizes well on FourCorner and maintains the best performance on TopOff. It is outperformed

66

on Harvester, although none of the methods do well on Harvester as the highest obtained reward by

any method is 0.04 (by VIPER). In summary, LEAPS performs the best on 4 out of these 5 tasks, further

demonstrating its superior zero-shot generalization performance.

Furthermore, we note that it is possible that a DRL policy employing a fully convolutional network

(FCN) as proposed in Long, Shelhamer, and Darrell [177] can handle varying observation sizes. FCNs were

also demonstrated in Silver et al. [278] to demonstrate better generalization performance than traditional

convolutional neural network policies. However, we hypothesize that the generalization performance here

will still be poor as there is a large increase in the number of features that the FCN architecture needs

to aggregate when transferring from 8x8/12x12 state inputs to 100x100 inputs—a 10x input size increase

that FCN is not specifically designed to deal with. We have included both FCN’s zero-shot generalization

results and its results on the original grid sizes in Table 3.9. DRL-FCN, where we have replaced the policy

and value function networks of PPO with an FCN, does manage to perform zero-shot transfer marginally

better than DRL performs when training from scratch (as it DRL’s architecture cannot handle varied input

sizes) on Maze and Harvester. However, it obtains a negative reward on StairClimber as it attempts

to navigate away from the stairs when transferring to the 100× 100 grid size. Its performance is still far

worse than LEAPS and VIPER on most tasks, demonstrating that the programmatic structure of the policy

is important for these tasks.

3.7.7.2 Generalization to Unseen Configurations

We present a generalization experiment in the main paper to study how well the baselines and the programs

synthesized by the proposed framework can generalize to larger state spaces that are unseen during training

without further learning on the StairClimber and Maze tasks. In this section, we investigate the ability of

generalizing to different configurations, which are defined based on the marker placement related to solve

a task, on both the TopOff task and Harvester task.

67

Table 3.10: Mean return (standard deviation) [% change in performance] on generalizing to unseen configu-
rations on TopOff and Harvester task.

TopOff Training configuration %
75% 50% 25% 10% 5%

DRL 0.17 (0.05) [-46.8%] 0.12 (0.09) [-62.5%] 0.12 (0.06) [-62.5%] 0.17 (0.13) [-46.8%] 0.13 (0.04) [-59.4%]
DRL-abs 0.23 (0.29) [-63.5%] 0.29 (0.36) [-54.0%] 0.45 (0.45) [-28.6%] 0.24 (0.38) [-61.9%] 0.26 (0.37) [-18.8%]
VIPER 0.27 (0.03) [-10.0%] 0.28 (0.04) [-6.67%] 0.27 (0.06) [-10.0%] 0.27 (0.02) [-10.0%] 0.28 (0.03) [-6.67%]

LEAPS 0.68 (0.18) [-15.0%] 0.65 (0.13) [-18.8%] 0.61 (0.24) [-23.8%] 0.68 (0.21) [-15.0%] 0.67 (0.18) [-16.3%]

Harvester Training configuration %
75% 50% 25% 10% 5%

DRL 0.64 (0.24) [-28.9%] 0.71 (0.29) [-21.1%] 0.21 (0.06) [-76.7%] 0.14 (0.09) [-84.4%] 0.04 (0.01) [-95.6%]
DRL-abs 0.14 (0.21) [-56.3%] 0.24 (0.25) [-25.0%] 0.05 (0.06) [-84.4%] 0.13 (0.21) [-59.4%] 0.31 (0.31) [-3.13%]
VIPER 0.54 (0.01) [+5.88%] 0.54 (0.02) [+5.88%] 0.55 (0.01) [+7.84%] 0.54 (0.01) [+5.88%] 0.44 (0.22) [-13.7%]

LEAPS 0.40 (0.30) [-13.0%] 0.42 (0.27) [-8.69%] 0.50 (0.35) [+08.69%] 0.12 (0.19) [-73.9%] 0.01 (0.03) [-97.6%]

Since solving TopOff requires an agent to put markers on top of all markers on the last row, the initial

configurations are determined by the marker presence on the last row. The grid has a size of 10× 10 inside

the surrounding wall. We do not spawn a marker at the bottom right corner in the last row, leaving 9

possible locations with marker, allowing 29 possible initial configurations. On the other hand, Harvester

requires an agent to pick up all the markers placed in the grid. The grid has a size of 6 × 6 inside the

surrounding wall, leaving 36 possible locations in grid with a marker, resulting in 236 possible initial

configurations.

We aim to test if methods can learn from only a small portion of configurations during training and

still generalize to all the possible configurations without further learning. To this end, we experiment using

75%, 50%, 25%, 10%, 5% of the configurations for training DRL, DRL-abs, and VIPER and for the program

search stage of LEAPS. Then, we test zero-shot generalization of the learned models and programs on all

the possible configurations. We report the performance in Table 3.10. We compare the performance each

method achieves to its own performance learning from all the configurations (reported in the main paper)

to investigate how limiting training configurations affects the performance. Note that the results of training

and testing on 100% configurations are reported in the main paper, where no generalization is required.

68

TopOff. LEAPS outperforms all the baselines on the mean return on all the experiments. VIPER and

LEAPS enjoy the lowest and the second lowest performance decrease when learning from only a portion of

configurations, which demonstrates the strength of programmatic policies. DRL-abs slightly outperforms

DRL, with better absolute performance and lower performance decrease. We believe that this is because

DRL takes entire Karel grids as input, and therefore held out configurations are completely unseen to it. In

contrast, DRL-abs takes abstract states (i.e. local perceptions) as input, which can alleviate this issue.

Harvester. VIPER outperforms almost all other methods on absolute performance and performance

decrease, while LEAPS achieves second best results, which again justifies the generalization of program-

matic policies. Both DRL and DRL-abs are unable to generalize well when learning from a limited set of

configurations, except in the case of DRL-abs learning from 5% of configurations, which can be attributed

to the high-variance of DRL-abs results.

3.7.8 Additional Analysis on Experimental Results

Due to the limited space in the main paper, we include additional analysis of the experimental results in

this section.

3.7.8.1 DRL vs. DRL-abs

We hypothesize that DRL-abs does not always outperformDRL due to imperfect perception (i.e. state abstrac-

tion) design. DRL-abs takes abstract states as input (i.e. frontIsClear(), leftIsClear(), rightIsClear(),

markerPresent() in our design), which only describe local perception while omitting the information of

the entire map. Therefore, for tasks such as StairClimber, Harvester, and CleanHouse, which would be

easier to solve with access to the entire Karel grid, DRL might outperform DRL-abs. In this work, DRL-abs’

abstract states are the perceptions from the DSL we synthesize programs with to make the comparisons

fair against our method as well as analyzing the effects of abstract states in the DRL domain. However, a

69

more sophisticated design for perception/state abstraction could potentially improve the performance of

DRL-abs.

3.7.8.2 VIPER Generalization

VIPER operates on the abstract state space which is invariant to grid size. However, for the reasons below,

it is still unable to transfer the behavior to the larger grid despite its abstract state representation. We

hypothesize that VIPER’s performance suffers on zero-shot generalization for two main reasons.

1. It is constrained to imitate the DRL teacher policy during training, which is trained on the smaller

grid sizes. Thus its learned policy also experiences difficulty in zero-shot generalization to larger grid

sizes.

2. Its decision tree policies cannot represent certain looping behaviors as they simply perform a one-to-

one mapping from abstract state to action, thus making it difficult to learn optimal behaviors that

require a one-to-many mapping between an abstract state and a set of desired actions. Empirically,

we observed that training losses for VIPER decision trees were much higher for tasks such as

StairClimber which require such behaviors.

3.7.9 Detailed Descriptions and Illustrations of Ablations and Baselines

This section provides details on the variations of LEAPS used for ablations studies and the baselines which

we compare against. The descriptions of the ablations of LEAPS are presented in Section 3.7.9.1 and the

illustrations are shown in Figure 3.15. The naïve program synthesis baseline is illustrated in Figure 3.16

(c) for better visualization. Then, the descriptions of the baselines are presented in Section 3.7.9.2 and the

illustrations are shown in Figure 3.16.

70

3.7.9.1 Ablations

We first ablate various components of our proposed framework in order to (1) justify the necessity of the

proposed two-stage learning scheme and (2) identify the effects of the proposed objectives. We consider

the following baselines and ablations of our method.

• Naïve: the naïve program synthesis baseline is a policy that learns to directly synthesize a program

from scratch by recurrently predicting a sequence of program tokens. The architecture of this baseline

is a recurrent neural network which takes an initial starting token as the input at the first time step,

and then sequentially outputs a program token at each time step to compose a program until an

end token is produced. Note that the observation of this baseline is its own previously outputted

program token instead of the state of the task environment (e.g. Karel grids). Also, at each time step,

this baseline produces a distribution over all the possible program tokens in the given DSL instead of

a distribution over agent’s action in the task environment (e.g. move()). This baseline investigates if

an end-to-end learning method can solve the problem. This baseline is illustrated in Figure 3.16 (c).

• LEAPS-P: the simplest ablation of LEAPS, in which the program embedding space is learned by only

optimizing the program reconstruction loss LP. This baseline is illustrated in Figure 3.15 (a).

• LEAPS-P+R: an ablation of LEAPS which optimizes both the program reconstruction loss LP and the

program behavior reconstruction loss LR. This baseline is illustrated in Figure 3.15 (b).

• LEAPS-P+L: an ablation of LEAPS which optimizes both the program reconstruction loss LP and the

latent behavior reconstruction loss LL. This baseline is illustrated in Figure 3.15 (c).

• LEAPS (LEAPS-P+R+L): LEAPS with all the losses, optimizing our full objective.

• LEAPS-rand-{8/64}: like LEAPS, this ablation also optimizes the full objective for learning the program

embedding space. But when searching latent programs, instead of CEM, it simply randomly samples

71

8/64 candidate latent programs and chooses the best performing one. These baselines justify the

effectiveness of using CEM for searching latent programs.

3.7.9.2 Baselines

We evaluate LEAPS against the following baselines (illustrated in Figure 3.16).

• DRL: a neural network policy trained on each task and taking raw states (Karel grids) as input. A

Karel grid is represented as a binary tensor with dimensionW ×H × 16 (there are 16 possible states

for each grid square) instead of an image. This baseline is illustrated in Figure 3.16 (a).

• DRL-abs: a recurrent neural network policy directly trained on each Karel task but instead of

taking raw states (Karel grids) as input it takes abstract states as input (i.e. it sees the same percep-

tions as LEAPS). Specifically, all returned values of perceptions such as frontIsClear()==true,

leftIsClear()==false, rightIsClear()==true, markersPresent()==false, and

noMarkersPresent()==true are concatenated as a binary vector, which is then fed to the DRL-abs

policy as its input. This baseline allows for a fair comparison to LEAPS since the program execution

process also utilizes abstract state information. This baseline is illustrated in Figure 3.16 (b).

• DRL-abs-t: a DRL transfer learning baseline in which for each task, we train DRL-abs policies on

all other tasks, then fine-tune them on the current task. Thus it acquires a prior by learning to first

solve other Karel tasks. Rewards are reported for the policies from the task that transferred with

highest return. We only transfer DRL-abs policies as some tasks have different state spaces so that

transferring a DRL policy trained on a task to another task with a different state space is not possible.

This baseline is designed to investigate if acquiring task related priors allows DRL policies to perform

better on our Karel tasks. Unlike LEAPS, which acquires priors from a dataset consisting of randomly

72

generated programs and the behaviors those program induce in the environment, DRL-abs-t allows

for acquiring priors from goal-oriented behaviors (i.e. other Karel tasks).

• HRL: a hierarchical RL baseline in which a VAE is first trained on action sequences from program

execution traces used by LEAPS. Once trained, the decoder is utilized as a low-level policy for learning

a high-level policy to sample actions from. Similar to LEAPS, this baseline utilizes the dataset to

produce a prior of the domain. It takes raw states (Karel grids) as input.

This baseline is also designed to investigate if acquiring priors allow DRL policies to perform better.

Similar to LEAPS, which acquires priors from a dataset consisting of randomly generated programs

and the behaviors those program induce in the environment, HRL is trained to acquire priors by

learning to reconstruct the behaviors induced by the programs. One can also view this baseline

as a version of the framework proposed in [108] with some simplifications, which also learns an

embedding space using a VAE and then trains a high-level policy to utilize this embedding space

together with the low-level policy whose parameters are frozen. This baseline is illustrated in Figure

3.16 (d).

• HRL-abs: the same method as HRL but taking abstract states (i.e. local perceptions) as input. This

baseline is illustrated in Figure 3.16 (d).

• VIPER [25]: A decision-tree programmatic policy which imitates the behavior of a deep RL teacher

policy via a modified DAgger algorithm [251]. This decision tree policy cannot synthesize loops,

allowing us to highlight the performance advantages of more expressive program representation that

LEAPS is able to take advantage of.

All the baselines are trained with PPO [265] or SAC [104], including the VIPER teacher policy. More

training details can be found in Section 3.7.12.

73

3.7.10 Program Dataset Generation Details

To learn a program embedding space for the proposed framework and its ablations, we randomly generate

50k programs to form a dataset with 35k training programs and 7.5k programs for validation and testing.

Simply generating programs by uniformly sampling all the tokens from the DSL would yield programs

that mainly only contain action tokens since the chance to synthesize conditional statements with correct

grammar is low. Therefore, to produce programs that are longer and deeply nested with conditional

statements to induce more complex behaviors, we propose to sample programs using a probabilistic

sampler.

To generate each program, we sample program tokens according to the probabilities listed in Table 3.11

at every step until we sample an ending token or when a maximum program length is reached. When

generating programs, we ensure that no program is identical to any other. Each token is generated

sequentially, and length is effectively governed by the STMT_STMT token detailed in Table 3.11’s caption.

There is a maximum depth limit of 4 nested conditional/loop statements, and a maximum statement depth

limit of 6 (can’t have more than 6 nested STMT_STMT tokens). Note that this sampling procedure does not

guarantee that the programs generated will terminate, hence when executing them to obtain ground-truth

interactions for training the Program Behavior and Latent Behavior Reconstruction losses we limit the max

program execution length to 100 environment timesteps. This sampling procedure results in the distribution

of program lengths seen in Figure 3.17.

Intuitively, shorter lengths can bias synthesized programs to compress the same behaviors into fewer

tokens through the use of loops, making program search easier. Therefore, in our experiments, we have

limited the maximum output program length of LEAPS to 45 tokens (as the maximum in the dataset is

44). As shown in the example programs generated by LEAPS in Figure 3.14, LEAPS successfully generates

loops for our Karel tasks, which can be probably attributed to this bias of program length. We further verify

this intuition by rerunning LEAPS with the max program length set to 100 tokens on the Karel tasks. We

74

display generated programs in Table 3.12, where we see that some of the generated programs are indeed

much longer and lack loop statements and structures.

Table 3.11: The probability of sampling program tokens when generating the program dataset. Tokens are
generated sequentially, and STMT_STMT refers to breaking up the current token into two tokens, each of
which is selected according to the same probability distribution again. Thus it effectively controls how long
programs will be.

WHILE REPEAT STMT_STMT ACTION IF IFELSE

Standard Dataset 0.15 0.03 0.5 0.2 0.08 0.04

3.7.11 Karel Task Details

MDP TasksWe utilize environment state based reward functions for the RL tasks StairClimber, Four-

Corner, TopOff, Maze, Harvester, and CleanHouse. For each task, we average performance of the

policies on 10 random environment start configurations. For all tasks with marker placing objectives, the

final reward will be 0—regardless of the any other agent actions—if a marker is placed in the wrong location.

This is done in order to discourage “spamming” marker placement on every grid location to exploit the

reward functions. All rewards described below are then normalized so that the return is between [0, 1.0]

for tasks without penalties, and [-1.0, 1.0] for tasks with negative penalties, for easier learning for the DRL

methods. We visualize all tasks as well as their start and ideal end states in Figure 3.18 on a 10× 10 grid for

consistency in the visualizations (except CleanHouse).

3.7.11.1 StairClimber

The goal is to climb the stairs to reach where the marker is located. The reward is defined as a sparse

reward: 1 if the agent reaches the goal in the environment rollout, -1 if the agent moves to a position off

of the stairs during the rollout, and 0 otherwise. This is on a 12 × 12 grid, and the marker location and

agent’s initial location are randomized between rollouts.

75

Table 3.12: LEAPS Length 100 Synthesized Karel Programs. Line breaks are not shown here as the
programs are very long. The examples picked are ones that represent the programs generated by most seeds
for each task. Without the 45 token restriction on program lengths, programs for TopOff, fourCorner,
and Harvester are very long and have repetitive movements that can easily be put into REPEAT or WHILE
loops. The CleanHouse program also contains repeated, somewhat redundant WHILE loops. Maze and
StairClimber programs are mostly unaffected by the change in maximum program length. These programs
demonstrate that the bias induced by program length restriction is important for producing more complex
programs in the program synthesis phase of LEAPS.

Karel Task Program

StairClimber DEF run m(turnLeft turnRight turnLeft turnLeft turnRight WHILE c(noMarkersPresent c)} w(
turnLeft move w) m)

TopOff DEF run m(WHILE c(noMarkersPresent c) w(move w) turnRight turnRight turnRight turnRight
turnRight} turnRight turnRight turnRight turnRight turnRight turnRight turnRight turnRight
turnRight turnRight turnRight turnRight turnRight turnRight turnRight turnRight turnRight
turnRight turnRight turnRight turnRight turnRight turnRight turnRight putMarker turnRight
turnRight move turnRight move turnRight move turnRight move turnRight move turnRight move
turnRight move turnRight move turnRight move turnRight move turnRight move turnRight move
turnRight move turnRight move turnRight move turnRight move turnRight move turnRight move
turnRight move m)

CleanHouse DEF run m(turnRight pickMarker turnLeft turnRight turnLeft pickMarker move turnLeft WHILE c(
leftIsClear c) w(pickMarker move w) turnRight turnLeft pickMarker move turnLeft WHILE c(
leftIsClear c) w(pickMarker move w) turnLeft pickMarker} WHILE c(leftIsClear c) w(
pickMarker move turnLeft pickMarker w)} WHILE c(noMarkersPresent c) w(turnLeft move
pickMarker w) turnLeft pickMarker turnLeft m)

fourCorner DEF run m(turnRight turnRight turnRight turnRight turnRight turnRight turnRight turnRight
turnRight turnRight turnRight turnRight turnRight turnRight turnRight turnRight turnRight
turnRight turnRight turnRight turnRight turnRight turnRight turnRight turnRight WHILE c(
frontIsClear c) w(move w) turnRight WHILE c(frontIsClear c) w(move w) turnRight WHILE c
(frontIsClear c) w(move w) turnRight putMarker WHILE c(frontIsClear c) w(move w)
turnRight putMarker WHILE c(frontIsClear c) w(move w)} turnRight putMarker WHILE c(
frontIsClear c) w(move w) turnRight putMarker m)

Maze DEF run m(WHILE c(noMarkersPresent c) w(REPEAT R=1 r(turnRight r) move w) turnLeft
turnRight m)

Harvester DEF run m(turnLeft turnRight pickMarker move pickMarker move turnRight move pickMarker move
pickMarker move turnRight move pickMarker move pickMarker move pickMarker move turnRight
move pickMarker move pickMarker move pickMarker move turnRight move pickMarker move
pickMarker move pickMarker move pickMarker move turnRight move pickMarker move pickMarker
move pickMarker move pickMarker move turnRight move pickMarker move pickMarker move
pickMarker move pickMarker move pickMarker move turnRight move pickMarker move pickMarker
move pickMarker move pickMarker move pickMarker move turnRight move m)

76

3.7.11.2 FourCorner

The goal is to place a marker at each corner of the Karel environment grid. The reward is defined as sum

of corners having a marker divided by four. If the Karel state has a marker placed in wrong location, the

reward will be 0. This is on a 12× 12 grid.

3.7.11.3 TopOff

The goal is to place a marker wherever there is already a marker in the last row of the environment, and

end up in the rightmost square on the bottom row at the end of the rollout. The reward is defined as the

number of consecutive places until the agent either forgets to place a marker where the marker is already

present or places a marker at an empty location in last row, with a bonus for ending up on the last square.

This is on a 12× 12 grid, and the marker locations in the last row are randomized between rollouts.

3.7.11.4 Maze

The goal is to find a marker in randomly generated maze. The reward is defined as a sparse reward: 1 if the

agent finds the marker in the environment rollout, 0 otherwise. This is on a 8 × 8 grid, and the marker

location, agent’s initial location, and the maze configuration itself are randomized between rollouts.

3.7.11.5 CleanHouse

We design a complex 14×22 Karel environment grid that resembles an apartment. The goal is to pick up the

garbage (markers) placed at 10 different locations and reach the location where there is a dustbin (2 markers

in 1 location). To make the task simpler, we place the markers adjacent to any wall in the environment.

The reward is defined as total locations cleaned (markers picked) out of the total number of markers placed

in initial Karel environment state (10). The agent’s initial location is fixed but the marker locations are

randomized between rollouts.

77

3.7.11.6 Harvester

The goal is to pickup a marker from each location in the Karel environment. The final reward is defined as

the number of markers picked up divided the total markers present in the initial Karel environment state.

This is on a 8× 8 grid. We run bothMaze and Harvester on smaller Karel environment grids to save time

and compute resources because these are long horizon tasks.

3.7.12 Hyperparameters and Training Details

3.7.12.1 DRL and DRL-abs

RL training directly on the Karel environment is performed with the PPO algorithm [265] for 2M timesteps

using the ALF codebase∗. We tried a discretized SAC [104] implementation (by replacing Gaussian distribu-

tions with Categorical distributions), but it was outperformed by PPO on the Karel tasks on all environments.

We also tried tabular Q-learning from raw Karel grids (it wouldn’t work well on abstract states as the state

is partially observed), however it was also consistently outperformed by PPO. For DRL, the policies and

value networks are the same with a shared convolutional encoder that first processes the state (as the Karel

state size is (H ×W × 16) for 16 possible agent direction or marker placement values that each state in

the grid can take on at a time. The convolutional encoder consists of two layers: the first with 32 filters,

kernel size 2, and stride 1, the second with 32 filters, kernel size 4, and stride 1. For DRL-abs, the policy

and value networks are both comprised of an LSTM layer and a 2-layer fully connected network, all with

hidden sizes of 100.

For each task, we perform a comprehensive hyperparameter grid search over the following parameters,

and report results from the run with the best averaged final reward over 5 seeds.

The hyperparameter grid is listed below, shared parameters are also listed:

• Importance Ratio Clipping: {0.05, 0.1, 0.2}
∗https://github.com/HorizonRobotics/alf/

78

• Advantage Normalization: {True, False}

• Entropy Regularization: {0.1, 0.01, 0.001}

• Number of updates per training iteration (This controls the ratio of gradient steps to environment

steps): {1, 4, 8, 16}

• Number of environment steps per set of training iterations: 32

• Number of parallel actors: 10

• Optimizer: Adam

• Learning Rate: 0.001

• Batch Size: 128

Hyperparameters that performed best for each task are listed below.

DRL Import Ratio Clip Adv Norm Entropy Reg Updates per Train Iter

CleanHouse 0.1 True 0.01 4

FourCorner 0.2 True 0.01 16

Harvester 0.05 True 0.01 8

Maze: 0.05 True 0.001 8

StairClimber 0.1 True 0.1 4

TopOff 0.05 True 0.001 4

79

DRL-abs Import Ratio Clip Adv Norm Entropy Reg Updates per Train Iter

CleanHouse 0.2 True 0.01 8

FourCorner 0.05 True 0.01 4

Harvester 0.2 True 0.01 4

Maze: 0.2 True 0.001 4

StairClimber 0.05 True 0.1 16

TopOff 0.2 True 0.001 8

3.7.12.2 DRL-abs-t

DRL-abs-t is limited to DRL-abs policies as the state spaces are different for some of the Karel tasks. For DRL-

abs-t, we use the best hyperparameter configuration for each Karel task to train a policy to 1M timesteps.

Then, we attempt direct policy transfer to each other task by training for another 1M timesteps on the new

task with the same hyperparameters (excluding transferring to the same task). Numbers reported are from

the task transfer that achieved the highest reward. The tasks that we transfer from for each task are listed

below:

80

DRL-abs-t Transferred from

CleanHouse Harvester

FourCorner TopOff

Harvester Maze

Maze StairClimber

StairClimber Harvester

TopOff Harvester

3.7.12.3 HRL

Pretraining stage: We first train a VAE to reconstruct action trajectories generated from our program

dataset. For each program, we generate 10 rollouts in randomly configured Karel environments to produce

the HRL dataset, giving this baseline the same data as LEAPS. These variable-length action sequences are

encoded via an LSTM encoder into a 10-dimensional, continuous latent space and decoded by an LSTM

decoder into the original action trajectories. We chose 10-dimensional so as to not make downstream RL

too difficult. We tune the KL divergence weight (β) of this network such that it’s as high as possible while

being able to reconstruct the trajectories well. Network/training details below:

• β: 1.0

• Optimizer: Adam (All optimizers)

• Learning Rates: 0.0003

• Hidden layer size: 128

• # LSTM layers (both encoder/decoder): 2

81

• Latent embedding size: 10

• Nonlinearity: ReLU

• Batch Size: 128

Downstream (Hierarchical) RL On our Karel tasks, we use the VAE’s decoder to decode latent vectors

(actions for the RL agent) into varied-length action sequences for all Karel tasks. The decoder parameters

are frozen and used for all environments. The RL agent is retrained from scratch for each task, in the same

manner as the standard RL baselines DRL-abs and DRL. We use Soft-Actor Critic (SAC, Haarnoja et al.

[104]) as the RL algorithm as it is state of the art in many continuous action space environments. SAC grid

search parameters for all environments follow below:

• Number of updates per training iteration: {1, 8}

• Number of environment steps per set of training iterations: 8 (multiplied by the number of steps

taken by the decoder in the environment)

• Polyak Averaging Coefficient: {0.95, 0.9}

• Number of parallel actors: 1

• Batch size: 128

• Replay buffer size: 1M

The best hyperparameters follow:

82

HRL-abs Updates per Train Iter Polyak Coefficient

CleanHouse 1 0.95

FourCorner 8 0.9

Harvester 8 0.95

Maze 1 0.95

StairClimber 1 0.9

TopOff 1 0.9

HRL Updates per Train Iter Polyak Coefficient

CleanHouse 1 0.9

FourCorner 1 0.95

Harvester 1 0.95

Maze 8 0.9

StairClimber 8 0.95

TopOff 8 0.95

3.7.12.4 Naïve

The naïve program synthesis baseline takes an initial token as input and outputs an entire program at each

timestep to learn a recurrent policy guided by the rewards of these programs. We execute these generated

programs on 10 random environment start configurations in Karel to get the reward. We run PPO for 2M

Karel environment timesteps. The policy network is comprised of one shared GRU layer, followed by two

fully connected layers, for both the policy and value networks. For evaluation, we generate 64 programs

83

from the learned policy, and choose the program with the maximum reward on 10 demonstrations. For each

task, we perform a hyperparameter grid search over the following parameters, and report results from the

run with the best averaged final reward over 5 seeds. We exponentially decay the entropy loss coefficient

in PPO from the initial to final entropy coefficient to avoid local minima during the initial training steps.

• Learning Rate: 0.0005

• Batch Size (B): {64, 128, 256}

• initial entropy coefficient (Ei): {1.0, 0.1}

• final entropy coefficient: {0.01}

• Hidden Layer Size: 64

Hyperparameters that performed best for each task are listed below.

Naïve B Ei

WHILE 128 0.1

IFELSE+WHILE 256 1.0

2IF+IFELSE 256 0.1

WHILE+2IF+IFELSE 128 0.1

84

Naïve B Ei

CleanHouse 128 0.1

FourCorner 128 1.0

Harvester 128 1.0

Maze 256 1.0

StairClimber 128 1.0

TopOff 128 1.0

3.7.12.5 VIPER

VIPER [25] builds a decision tree programmatic policy by imitating a given teacher policy. We use the best

DRL policies as teachers instead of the DQN [200] teacher policy used in Bastani, Pu, and Solar-Lezama [25].

We did this in order to give the teacher the best performance possible for maximum fairness in comparison

against VIPER, as we empirically found the PPO policy to perform much better on our tasks than a DQN

policy.

We perform a grid search over VIPER hyperparameters, listed below:

• Max depth of decision tree: {6, 12, 15}

• Max number of samples for tree policy: {100k, 200k, 400k}

• Sample reweighting: {True, False}

The best hyperparameters found for each task are listed below:

85

VIPER Max Depth Max Num Samples Sample Reweighting

CleanHouse 6 100k False

FourCorner 12 100k False

Harvester 12 400k True

Maze 12 100k True

StairClimber 12 400k True

TopOff 15 100k False

3.7.12.6 Program Embedding Space VAE Model

Encoder-Decoder Architecture. The encoder and decoder are both recurrent networks. The encoder

structure consists of a PyTorch token embedding layer, then a recurrent GRU cell, and two linear layers

that produce µ and log σ vectors to sample the program embedding.

The decoder consists of a recurrent GRU cell which takes in the embedding of the previous token

generated and then a linear token output layer which models the log probabilities of all discrete tokens.

Since we have access to DSL grammar during program synthesis, we utilize a syntax checker based on the

Karel DSL grammar from Bunel et al. [35] at the output of the decoder to limit predictions to syntactically

valid tokens. We restrict our decoder from predicting syntactically invalid programs by masking out

tokens that make a program syntactically invalid at each timestep. This syntax checker is designed as a

state machine that keeps track of a set of valid next tokens based on the current token, open code blocks

(e.g. while, if, ifelse) in the given partial program, and the grammar rules of our DSL. Since we

86

generate a program as a sequence of tokens, the syntax checker outputs at each timestep a mask M , where

M ∈ {−∞, 0}number of DSL tokens, and

Mj =

−∞ if the j-th token is not valid in the current context

0 otherwise

This mask is added to the output of the last layer of the decoder, just before the Softmax operation that

normalizes the output to a probability over the tokens.

π Architecture. The program-embedding conditioned policy π consists of a GRU layer that operates on

the inputs and three MLP layers that output the log probability of environment actions. Specifically, it takes

a latent program vector, current environment state, and previous action as input and outputs the predicted

environment action for each timestep.

To evaluate how close the predicted neural execution traces are to the execution traces of the ground-

truth programs, we consider the following metrics:

• Action token accuracy: the percentage of matching actions in the predicted execution traces and the

ground-truth execution traces.

• Action sequence accuracy: the percentage of matching action sequences in the predicted execution

traces and the ground-truth execution traces. It requires that a predicted execution trace entirely

matches the ground-truth execution trace.

After convergence, our model achieves an action token accuracy of 96.5% and an action sequence

accuracy of 91.3%.

Training. The reinforcement learning algorithm used for the program behavior reconstruction LR is

REINFORCE [325].

87

When training LEAPS with all losses, we first train with the Program Reconstruction (LP) and Latent

Behavior Reconstruction (LL) losses, essentially setting λ1 = λ3 = 1 and λ2 = 0 of our full objective,

reproduced below:

min
θ,ϕ,π

λ1LPθ,ϕ(ρ) + λ2LRθ,ϕ(ρ) + λ3LLπ(ρ, π), (3.6)

Once this model is trained for one epoch, we then train exclusively with the Program Behavior Recon-

struction loss (LR), setting λ2 = 1 and λ1 = λ3 = 0, with equal number of updates. These two update steps

are repeated alternatively till convergence is achieved. This is done to avoid potential issues of updating

with supervised and reinforcement learning gradients at the same time. We did not attempt to train these 3

losses jointly.

All other shared hyperparameters and training details are listed below:

• β: 0.1

• Optimizer: Adam (All optimizers)

• Supervised Learning Rate: 0.001

• RL Learning Rate: 0.0005

• Batch Size: 256

• Hidden Layer Size: 256

• Latent Embedding Size: 256

• Nonlinearity: Tanh()

88

3.7.12.7 Cross-Entropy Method (CEM)

CEM search works as follows: we sample an initial latent program vector from the initial distribution DI ,

and generate population of latent program vectors from a N (0, σId) distribution, where Id is the identity

matrix of dimension d. The samples are added to the initial latent program vector to obtain the population

of latent program vectors which are decoded into programs to obtain their rewards. The population is then

sorted based on rewards obtained, and a set of ‘elites’ with the highest reward are reduced using weighted

mean to one latent program vector for the next iteration of sampling. This process repeats for all CEM

iterations.

We include the following sets of hyperparameters when searching over the program embedding space

to maximize Rmat to reproduce ground-truth program behavior or to maximize Rmat in the Karel task MDP.

• Population Size (S): {8, 16, 32, 64}

• µ: {0.0}

• σ: {0.1, 0.25, 0.5}

• % of population elites (this refers to the percent of the population considered ‘elites’): {0.05, 0.1, 0.2}

• Exponential σ decay†: {True, False}

• Initial distribution DI : {N (1,0),N (0, Id),N (0, 0.1Id)}

Since a comprehensive grid search over the hyperparameter space would be too computationally

expensive, we choose parameters heuristically. We report results from the run with the best averaged

reward over 5 seeds. Hyperparameters that performed best for each task are listed below.

Ground-Truth Program ReconstructionWe include the following sets of hyperparameters when

searching over the program embedding space tomaximizeRmat to reproduce ground-truth program behavior.
†Over the first 500 epochs, we exponentially decay σ to 0.1, and then we keep it at 0.1 for the rest of the epochs if True.

89

We allow the search to run for 1000 CEM iterations, counting the search as a success when it achieves 10

consecutive CEM iterations with matching the ground-truth program behaviors exactly in the environment

across 10 random environment start configurations. We use same hyperparameter set to compare LEAPS-P,

LEAPS-P+R, LEAPS-P+L, and LEAPS.

CEM S σ # Elites Exp Decay DI

WHILE 32 0.25 0.1 False N (0, 0.1Id)

IFELSE+WHILE 32 0.25 0.1 True N (0, 0.1Id)

2IF+IFELSE 16 0.25 0.2 True N (0, 0.1Id)

WHILE+2IF+IFELSE 32 0.25 0.2 False N (0, 0.1Id)

MDP Task Performance We include the following sets of hyperparameters when searching over the

LEAPS program embedding space to maximize rewards in the MDP. We allow the search to run for 1000

CEM iterations, counting the search as a success when it achieves 10 consecutive CEM iterations of

maximizing environment reward (solving the task) across 10 random environment start configurations.

CEM S σ # Elites Exp Decay DI

CleanHouse 32 0.25 0.05 True N (1,0)

FourCorner 64 0.5 0.2 False N (0, 0.1Id)

Harvester 32 0.5 0.1 True N (0, Id)

Maze 16 0.1 0.1 False N (1,0)

StairClimber 32 0.25 0.05 True N (0, 0.1Id)

TopOff 64 0.25 0.05 False N (0, 0.1Id)

90

3.7.12.8 Random Search LEAPS Ablation

The random search LEAPS ablations (LEAPS-rand-8 and LEAPS-rand-64) replace the CEM search method

for latent program synthesis with a simple random search method. Both use the full LEAPS model trained

with all learning objectives. We sample an initial vector from an initial distribution DI and add it to either

8 or 64 latent vector samples from a N (0, σId) distribution. We then decode those vectors into programs

and evaluate their rewards, and then report the rewards of the best-performing latent program from that

population.

As such, the only parameters that we require are the initial sampling distribution and σ. We perform a

grid search over the following for both LEAPS-rand-8 and LEAPS-rand-64.

• σ: {0.1, 0.25, 0.5}

• Initial distribution DI : {N (0, Id),N (0, 0.1Id)}

Ground-Truth Program Reconstruction We report hyperparameters below for both random search

methods on program reconstruction tasks.

LEAPS-rand-8 σ DI

WHILE 0.1 N (0, 0.1Id)

IFELSE+WHILE 0.5 N (0, 0.1Id)

2IF+IFELSE 0.5 N (0, 0.1Id)

WHILE+2IF+IFELSE 0.5 N (0, 0.1Id)

91

LEAPS-rand-64 σ DI

WHILE 0.5 N (0, 0.1Id)

IFELSE+WHILE 0.5 N (0, 0.1Id)

2IF+IFELSE 0.5 N (0, 0.1Id)

WHILE+2IF+IFELSE 0.5 N (0, 0.1Id)

MDP Task PerformanceWe report hyperparameters below for both random search methods on Karel

tasks.

LEAPS-rand-8 σ DI

CleanHouse 0.5 N (0, 0.1Id)

FourCorner 0.5 N (0, 0.1Id)

Harvester 0.5 N (0, 0.1Id)

Maze 0.25 N (0, 0.1Id)

StairClimber 0.5 N (0, Id)

TopOff 0.25 N (0, 0.1Id)

92

LEAPS-rand-64 σ DI

CleanHouse 0.5 N (0, 0.1Id)

FourCorner 0.25 N (0, 0.1Id)

Harvester 0.5 N (0, 0.1Id)

Maze 0.1 N (0, 0.1Id)

StairClimber 0.25 N (0, 0.1Id)

TopOff 0.5 N (0, 0.1Id)

3.7.13 Computational Resources

For our experiments, we used both internal and cloud provider machines. Our internal machines are:

• M1: 40-vCPU Intel Xeon with 4 GTX Titan Xp GPUs

• M2: 72-vCPU Intel Xeon with 4 RTX 2080 Ti GPUs

The cloud instances that we used are either 128-thread AMD Epyc or 96-thread Intel Xeon based cloud

instances with 4-8 NVIDIA Tesla T4 GPUs. Experiments were run in parallel across many CPUs whenever

possible, thus requiring the high vCPU count machines.

The experiment costs (GPU memory/time) are as follows:

Learning Program Embedding Stage:

• LEAPS-P: 4.2GB/13hrs on either M1 or M2

• LEAPS-P+R: 4.2GB/44-54hrs on M2

• LEAPS-P+L: 8.7GB/26hrs on either M1 or M2

• LEAPS: 8.8GB/104hrs on M1, 8.8GB/58hrs on M2

93

Policy Learning Stage:

• CEM search: 0.8GB/4-10min (depends on the CEM population size and the number of iterations until

convergence)

• DRL/DRL-abs/DRL-abs-t: 0.7-2GB/1hr per run with parallelization across 10 processes

• HRL/HRL-abs: 1-2GB/2.5hrs per run

• VIPER: 0.7GB/20-30 minutes (excluding the time for learning its teacher policy)

3.7.14 Toward Robotics Applications

One way to make the LEAPS framework applicable to robotics domains would be simultaneously learning

perception modules and action controllers. Other possible solutions include incorporating program execu-

tion methods [11, 216, 288, 337, 160, 124] that are designed to allow program execution or designing DSLs

that allow pre-training of perception modules and action controllers.

Also, the proposed framework share similarity with works in multi-task RL [216, 11, 295, 299, 281] and

meta-learning [280, 202, 319, 315, 311, 244, 77, 139, 316, 45, 158, 212, 252, 193, 239, 49]. Specifically, the

proposed framework learns a program embedding space from a distribution of tasks/programs. Once the

program embedding space is learned, it can be be reused to solve different tasks without retraining.

94

(a) LEAPS-P (b) LEAPS-P+R

(c) LEAPS-P+L (d) LEAPS

Figure 3.4: Visualizations of learned program embedding space. We perform dimensionality reduction
with PCA to embed encoded programs from the training dataset, samples drawn from a normal distribution,
programs from the testing dataset, and programs reconstructed by models to a 2D space. The shape of the
latent training programs in the program embedding spaces learned by LEAPS-P and LEAPS-P+R are similar
to a normal distribution, while in the program embedding spaces learned by LEAPS and LEAPS-P+L, the
shape is more twisted, suggesting the effectiveness of the proposed latent behavior reconstruction objective.
Moreover, the distances between pairs of ground-truth programs and their reconstructions are smaller in
the program embedding space learned by LEAPS, highlighting the advantage of employing both of the two
proposed behavior reconstruction objectives.

95

(a) Iteration 1 (b) Iteration 4 (c) Iteration 9

(d) Iteration 14 (e) Iteration 19 (f) Iteration 23

Figure 3.5: StairClimber CEM Trajectory Visualization. Latent training programs from the training
dataset, a ground-truth program for StairClimber task, CEM populations, and CEM next candidate
programs are embedded to a 2D space using PCA. Both the average reward of the entire population and the
reward of the next candidate program (CEM Next Center) consistently increase as the number of iterations
increase. Also, the CEM population gradually moves toward where the ground-truth program is located.

96

(a) Iteration 1 (b) Iteration 211 (c) Iteration 422

(d) Iteration 633 (e) Iteration 843 (f) Iteration 1000

Figure 3.6: FourCorner CEM Trajectory Visualization. Latent training programs from the training
dataset, a ground-truth program for the FourCorner task, CEM populations, and CEM next candidate
programs are embedded to a 2D space using PCA. The CEM trajectory does not converge. The ground-truth
program lies far away from the initial sampled distribution, which might contribute to the difficulty of
converging.

97

Figure 3.7: User Interface for the Human Debugging Interpretability Experiments. The top contains
moving rollout visualizations of the current program in the “Input Program” box, which users are allowed
to edit. “Input Program” will first contain the program synthesized by LEAPS. Syntax errors or other issues
with code (such as the edit distance being too high) are displayed in the “Issue with Code?” box, the reward
of the current inputted program is in the “New Reward” box, and the reward of the original program
synthesized by LEAPS is in the “Orig Reward” box. The user’s best reward across all inputted programs is
kept track of in the “Best Reward” box.

98

Figure 3.8: Human Debugging Experiment Example Programs (TopOff). Example original and
human-edited programs for each Karel task for edit distances 3 and 5.

99

Figure 3.9: Human Debugging Experiment Example Programs (FourCorner). Example original and
human-edited programs for each Karel task for edit distances 3 and 5.

100

Figure 3.10: Human Debugging Experiment Example Programs (Harvester). Example original and
human-edited programs for each Karel task for edit distances 3 and 5.

101

Figure 3.11: Ground-Truth Test and Karel Programs. Here we display ground-truth test set programs
used for reconstruction experiments and example ground-truth programs that we write which can solve the
Karel tasks (there are an infinite number of programs that can solve each task). Conditionals are enclosed
in c(c), while loops are enclosed in w(w), if statements are enclosed in i(i), and the main program is
enclosed in DEF run m(m).

102

Figure 3.12: Example program reconstruction task programs generated by naïve, LEAPS-P, and

LEAPS-P+R. The programs that achieve the highest reward while being representative of programs
generated by most seeds are shown. The naïve program synthesis baseline usually generates the simplest
programs, with fewer conditional statements and loops than the LEAPS ablations. Notably, it fails to
generate IFELSE statements on these examples, while LEAPS has no problem doing so.

103

Figure 3.13: Example program reconstruction task programs generated by LEAPS-P+L and LEAPS.

The programs that achieve the highest reward while being representative of programs generated by most
seeds are shown. The naïve program synthesis baseline usually generates the simplest programs, with fewer
conditional statements and loops than the LEAPS ablations. Notably, it fails to generate IFELSE statements
on these examples, while LEAPS has no problem doing so.

104

Figure 3.14: Example Karel programs generated by LEAPS. The programs that achieved the best reward
out of all seeds are shown.

105

(a) LEAPS-P (b) LEAPS-P+R

Program ⇢
Latent

Program z

def run():
if frontIsClear():

move()
else:

turnLeft()

def run():
if frontIsClear():

move()
else:

turnLeft()

LP

Reconstructed

Program ⇢̂ Program ⇢

Latent
Program z

def run():
if frontIsClear():

move()
else:

turnLeft()

def run():
if frontIsClear():

move()
else:

turnLeft()

Environment

Execute

LP

LR

Reconstructed

Program ⇢̂

Environment

Execute

Latent
Program z

Program ⇢
def run():
if frontIsClear():

move()
else:

turnLeft()

def run():
if frontIsClear():

move()
else:

turnLeft()

Environment

Execute

Environment

Execute

LP

LR

Reconstructed

Program ⇢̂

LL

(d) LEAPS (LEAPS-P+R+L)

Program ⇢
def run():
if frontIsClear():

move()
else:

turnLeft()

def run():
if frontIsClear():

move()
else:

turnLeft()

Environment

Execute

LP

LL

Latent
Program z

Reconstructed

Program ⇢̂

(c) LEAPS-P+L

Learnable mapping

Training Objective

Latent Program

Figure 3.15: LEAPS Variations Illustrations. Blue trapezoids represent the modules whose parameters
are being learned in the learning program embedding stage. Red diamonds represent the learning objectives.
Gray rounded rectangle represent latent programs (i.e. program embeddings), which are vectors. (a) LEAPS-
P: the simplest ablation of LEAPS, in which the program embedding space is learned by only optimizing the
program reconstruction loss LP. (b) LEAPS-P+R: an ablation of LEAPS which optimizes both the program
reconstruction loss LP and the program behavior reconstruction loss LR. (c) LEAPS-P+L: an ablation of
LEAPS which optimizes both the program reconstruction loss LP and the latent behavior reconstruction
loss LL. (d) LEAPS (LEAPS-P+R+L): our proposed framework that optimizes all the proposed objectives.

106

(d) HRL / HRL-abs

Learning High-level Policy

(b) DRL-abs

Abstract State

frontIsClear()

leftIsClear()

rightIsClear()

markerIsPresent()

Yes

No

Yes

No

a

(a) DRL

Raw State

stairClimber

a

(c) Naive

startToken

Program Synthesized So Far
def run():
if frontIsClear():
move()

else:
turnLeft()

turnLeft()

Program Token Generated at t

LP

Program ⇢
def run():
if frontIsClear():

move()
else:

turnLeft()

Environment

Execute

Action Sequence
Reconstructed

Action Sequence
â1, â2, ..., ât

Action
Embedding

Learning Action Sequence Embedding

a

Action
Embedding

State

Raw State
stairClimber

Abstract State

OR
decenc

dec

Figure 3.16: Baseline Methods Illustrations. (a) DRL: a DRL policy that takes raw state input (i.e. a Karel
grid represented as aW ×H×12 binary tensor as there are 12 possible states for each grid square). (b) DRL-
abs: a DRL policy that takes abstract state input, containing a vector of returned values of perceptions, e.g.
frontIsClear()==true and markersPresent()==false. (c) Naive: a naïve program synthesis baseline
that learns to directly synthesize a program from scratch by recurrently predicting a sequence of program
tokens. (d) HRL/HRL-abs: a hierarchical RL baseline in which a VAE, consisting of a encoder enc and a
decoder dec, is first trained to reconstruct action sequences from program execution traces used by LEAPS.
Once the action embedding space is learned, it employs a high-level policy π that learns from scratch to
solve task by predicting a distribution in the learned action embedding space. Note that the parameters of
the decoder dec are frozen (represented in gray) when the high-level policy is learning. The HRL policy
takes raw state input (same as the DRL baseline) and the HRL-abs policy takes abstract state input (same as
the DRL-abs baseline).

107

5 10 15 20 25 30 35 40 45
0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

Karel Train Dataset Program Lengths

5 10 15 20 25 30 35 40
0.00

0.02

0.04

0.06

0.08

0.10
De

ns
ity

Karel Validation Dataset Program Lengths

Figure 3.17: Histograms of the program length (i.e. number of program tokens) in the training and validation
datasets.

108

Figure 3.18: Example of initial configurations and their ideal end states of the Karel tasks. Note that we show
only one example of initial configuration and its ideal end sate pair for each task. However, markers, walls
and agent’s position are randomized in initial configurations depending upon task. Please see section 3.7.11
for more details.

109

(a) StairClimber: LEAPS and DRL are able to climb the stairs, DRL-abs is unable to do so.

(b) fourCorner: In this example, LEAPS generates a program which is able to completely solve the task. Both DRL
methods learn to only place one single marker in the left bottom corner.

(c) TopOff: Here, LEAPS generates a program that solves the task by “topping off” each marker. Both DRL methods
only learn to top off the initial marker.

110

(d) Maze: All three methods are able to solve the task.

(e) CleanHouse: While both DRL methods learn no meaningful behaviors (generally just spinning around in place),
LEAPS generates a program that is able to navigate to and clean the leftmost room.

(f) Harvester: All three methods make partial progress on Harvester.

Figure 3.19: Karel Rollout Visualizations. Example rollouts for LEAPS, DRL-abs, and DRL for each task.
111

Part III

Primitive Skill Acquisition

112

Chapter 4

Meta-Learning on Multimodal Task Distributions

4.1 Introduction

Humans make effective use of prior knowledge to acquire new skills rapidly. When the skill of interest is

related to a wide range of skills that one have mastered before, we can recall relevant knowledge of prior

skills and exploit them to accelerate the new skill acquisition procedure. For example, imagine that we

are learning a novel snowboarding trick with knowledge of basic skills about snowboarding, skiing, and

skateboarding. We accomplish this feat quickly by exploiting our basic snowboarding knowledge together

with inspiration from our skiing and skateboarding experience.

Can machines likewise quickly master a novel skill based on a variety of related skills they have already

acquired? Recent advances in meta-learning [311, 79, 70] have attempted to tackle this problem. They offer

machines a way to rapidly adapt to a new task using few samples by first learning an internal representation

that matches similar tasks. Such representations can be learned by considering a distribution over similar

tasks as the training data distribution. Model-based (i.e. RNN-based) meta-learning approaches [70, 319,

202, 193] propose to recognize the task identity from a few sample data, use the task identity to adjust a

model’s state (e.g. RNN’s internal state or an external memory) and make the appropriate predictions with

the adjusted model. Those methods demonstrate good performance at the expense of having to hand-design

architectures, yet the optimal strategy of designing a meta-learner for arbitrary tasks may not always

113

be obvious to humans. On the other hand, model-agnostic meta-learning frameworks [77, 81, 139, 158,

94, 212, 254, 252] seek an initialization of model parameters that a small number of gradient updates will

lead to superior performance on a new task. With the flexibility in the model choices, these frameworks

demonstrate appealing performance on a variety of domains, including regression, image classification,

and reinforcement learning.

While most of the existing model-agnostic meta-learners rely on a single initialization, different tasks

sampled from a complex task distributions can require substantially different parameters, making it difficult

to find a single initialization that is close to all target parameters. If the task distribution is multimodal with

disjoint and far apart modes (e.g. snowboarding, skiing), one can imagine that a set of separate meta-learners

with each covering one mode could better master the full distribution. However, associating each task

with one of the meta-learners not only requires additional task identity information, which is often not

available or could be ambiguous when the modes are not clearly disjoint, but also disables transferring

knowledge across different modes of the task distribution. To overcome this issue, we aim to develop a

meta-learner that is able to acquire mode-specific prior parameters and adapt quickly given tasks sampled

from a multimodal task distribution.

To this end, we leverage the strengths of the two main lines of existing meta-learning techniques:

model-based and model-agnostic meta-learning. Specifically, we propose to augment MAML [77] with the

capability of generalizing across a multimodal task distribution. Instead of learning a single initialization

point in the parameter space, we propose to first compute the task identity of a sampled task by examining

task related data samples. Given the estimated task identity, our model then performs modulation to

condition the meta-learned initialization on the inferred task mode. Then, with these modulated parameters

as the initialization, a few steps of gradient-based adaptation are performed towards the target task to

progressively improve its performance. An illustration of our proposed framework is shown in Figure 4.1.

114

To investigate whether our method can acquire meta-learned prior parameters by learning tasks sampled

from multimodal task distributions, we design and conduct experiments on a variety of domains, including

regression, image classification, and reinforcement learning. The results demonstrate the effectiveness of

our approach against other systems. A further analysis has also shown that our method learns to identify

task modes without extra supervision.

The main contributions of this paper are three-fold as follows:

• We identify and empirically demonstrate the limitation of having to rely on a single initialization in

a family of widely used model-agnostic meta-learners.

• We propose a framework together with an algorithm to address this limitation. Specifically, it

generates a set of meta-learned prior parameters and adapts quickly given tasks from a multimodal

task distribution leveraging both model-based and model-agnostic meta-learning.

• We design a set of multimodal meta-learning problems and demonstrate that our model offers a

better generalization ability in a variety of domains, including regression, image classification, and

reinforcement learning.

4.2 Related Work

The idea of empowering the machines with the capability of learning to learn [298] has been widely explored

by the machine learning community. To improve the efficiency of handcrafted optimizers, a flurry of recent

works has focused on learning to optimize a learner model. Pioneered by [261, 28], optimization algorithms

with learned parameters have been proposed, enabling the automatic exploitation of the structure of

learning problems. From a reinforcement learning perspective, [165] represents an optimization algorithm

as a learning policy. [13] trains LSTM optimizers to learn update rules from the gradient history, and [244]

115

trains a meta-learner LSTM to update a learner’s parameters. Similar approach for continual learning is

explored in [314].

Recently, investigating how we can replicate the ability of humans to learn new concepts from one or

a few instances, known as few-shot learning, has drawn people’s attention due to its broad applicability

to different fields. To classify images with few examples, metric-based meta-learning frameworks have

been proposed [143, 311, 280, 274, 289, 217, 45], which strive to learn a metric or distance function that

can be used to compare two different samples effectively. Recent works along this line [217, 342, 158]

share a conceptually similar idea with us and seek to perform task-specific adaptation with different type

transformations. Due to the limited space, we defer the detailed discussion to Appendix (Section 4.7). While

impressive results have been shown, it is nontrivial to adopt them for complex tasks such as acquiring

robotic skills using reinforcement learning [118, 170, 133, 242, 98, 104, 160].

On the other hand, instead of learning a metric, model-based (i.e. RNN-based) meta-learning models

learn to adjust model states (e.g. a state of an RNN [193, 70, 318] or external memory [256, 202]) using a

training dataset and output the parameters of a learned model or the predictions given test inputs. While

these methods have the capacity to learn any mapping from datasets and test samples to their labels, they

could suffer from overfitting and show limited generalization ability [79].

Model-agnostic meta-learners [77, 81, 139, 158, 94, 212, 254, 252] are agnostic to concrete model

configurations. Specifically, they aim to learn a parameter initialization under a certain task distribution,

that aims to provide a favorable inductive bias for fast gradient-based adaptation. With its model agnostic

nature, appealing results have been shown on a variety of learning problems. However, assuming tasks are

sampled from a concentrated distribution and pursuing a common initialization to all tasks can substantially

limit the performance of such methods on multimodal task distributions where the center in the task space

becomes ambiguous.

116

In this paper, we aim to develop a more powerful model-agnostic meta-learning framework which is

able to deal with complex multimodal task distributions. To this end, we propose a framework, which

first identifies the mode of sampled tasks, similar to model-based meta-learning approaches, and then it

modulates the meta-learned prior parameters to make the model better fit to the identified mode. Finally,

the model is fine-tuned on the target task rapidly through gradient steps.

4.3 Preliminaries

The goal of meta-learning is to quickly learn task-specific functions that map between input data and the

desired output (xk, yk)Kt
k=1 for different tasks t, where the number of data Kt is small. A task is defined by

the underlying data generating distribution P(X) and a conditional probability Pt(Y | X). For instance,

we consider five-way image classification tasks with xk to be images and yk to be the corresponding labels,

sampled from a task distribution. The data generating distribution is unimodal if it contains classification

tasks that belong to a single input and label domain (e.g. classifying different combination of digits). A

multimodal counterpart therefore contains classification tasks from multiple different input and label

domains (e.g. classifying digits vs. classifying birds). We denote the later distribution of tasks to be the

multimodal task distribution.

In this paper, we aim to rapidly adapt to a novel task sampled from a multimodal task distribution. We

consider a target dataset D consisting of tasks sampled from a multimodal distribution. The dataset is split

into meta-training and meta-testing sets, which are further divided into task-specific training Dtrain
T and

validation Dval
T sets. A meta-learner learns about the underlying structure of the task distribution through

training on the meta-training set and is evaluated on meta-testing set.

Our work builds upon Model-Agnostic Meta-Learning (MAML) algorithm [77]. MAML seeks an

initialization of parameters θ for a meta-learner such that it can be optimized towards a new task with a

small number of gradient steps minimizing the task-specific objectives on the training data Dtrain
T , with

117

Modulation Network Task Network

x

y

((

K⇥
Samples

Task Encoder

�
Task Embedding

Modulation
Network

Modulation
NetworkMLPs

x

y

� ✓2
⌧2

� ✓1
⌧1

�
⌧n
✓n

…
ŷ

Figure 4.1: Model overview. The modulation net-
work produces a task embedding υ , which is used
to generate parameters {τi} that modulates the task
network. The task network adapts modulated param-
eters to fit to the target task.

Algorithm 1MMAML Meta-Training Procedure.
1: Input: Task distribution P (T), Hyper-parameters α and β

2: Randomly initialize θ and ω.
3: while not DONE do

4: Sample batches of tasks Tj ∼ P (T)
5: for all j do
6: Infer υ = h({x, y}K ;ωh) with K samples from Dtrain

Tj .
7: Generate parameters τ = {gi(υ;ωg) | i = 1, · · · , N} to

modulate each block of the task network f .
8: Evaluate ∇θLTj (f(x; θ, τ);Dtrain

Tj) w.r.t the K samples
9: Compute adapted parameter with gradient descent:
10: θ′Tj = θ − α∇θLTj

(
f(x; θ, τ);Dtrain

Tj
)

11: end for

12: Update θ with β∇θ
∑

Tj∼P (T) LTj
(
f(x; θ′, τ);Dval

Tj
)

13: Update ωg with β∇ωg

∑
Tj∼P (T) LTj

(
f(x; θ′, τ);Dval

Tj
)

14: Update ωh with β∇ωh

∑
Tj∼P (T) LTj

(
f(x; θ′, τ);Dval

Tj
)

15: end while

the adapted parameters generalize well to the validation data Dval
T . The initialization of the parameters is

trained by sampling mini-batches of tasks from D, computing the adapted parameters for all Dtrain
T in the

batch, evaluating adapted parameters to compute the validation losses on the Dval
T and finally update the

initial parameters θ using the gradients from the validation losses.

4.4 Method

Our goal is to develop a framework to quickly master a novel task from a multimodal task distribution.

We call the proposed framework Multimodal Model-Agnostic Meta-Learning (MMAML). The main idea

of MMAML is to leverage two complementary neural networks to quickly adapt to a novel task. First, a

network called the modulation network predicts the identity of the mode of a task. Then the predicted mode

identity is used as an input by a second network called the task network, which is further adapted to the task

using gradient-based optimization. Specifically, the modulation network accesses data points from the target

task and produces a set of task-specific parameters to modulate the meta-learned prior parameters of the

task network. Finally, the modulated task network (but not the task-specific parameters from modulation

118

network) is further adapted to target task through gradient-based optimization. A conceptual illustration

can be found in Figure 4.1.

In the rest of this section, we introduce our modulation network and a variety of modulation operators

in Section 4.4.1. Then we describe our task network and the training details for MMAML in Section 4.4.2.

4.4.1 Modulation Network

As mentioned above, modulation network is responsible for identifying the mode of a sampled task, and

generate a set of parameters specific to the task. To achieve this, it first takes the given K data points

and their labels {xk, yk}k=1,...,K as input to the task encoder f and produces an embedding vector υ that

encodes the characteristics of a task:

υ = h
(
{(xk, yk) | k = 1, · · · ,K}; ωh

)
(4.1)

Then the task-specific parameters τ are computed based on the encoded task embedding vector υ, which

is further used to modulate the meta-learned prior parameters of the task network. The task network

(introduced later in Section 4.4.2) can be an arbitrarily parameterized function, with multiple building

blocks (or layers) such as deep convolutional networks [110], or multi-layer recurrent networks [234]. To

modulate the parameters of each block in the task network as good initialization for solving the target

task, we apply block-wise transformations to scale and shift the output activation of each hidden unit in

the network (i.e. the output of a channel of a convolutional layer or a neuron of a fully-connected layer).

Specifically, the modulation network produces the modulation vectors for each block i, denoted as

τi = gi (υ;ωg) ,where i = 1, · · · , N, (4.2)

119

whereN is the number of blocks in the task network. We formalize the procedure of applying modulation as:

ϕi = θi ⊙ τi, where ϕi is the modulated prior parameters for the task network, and ⊙ represents a general

modulation operator. We investigate some representative modulation operations including attention-based

(softmax) modulation [199, 306] and feature-wise linear modulation (FiLM) [231, 220, 121]. We empirically

observe that FiLM performs better and more stable than attention-based modulation (see Section 4.5 for

details), and therefore use FiLM as default operator for modulation. The details of these modulation

operators can be found in Appendix (Section 4.7).

4.4.2 Task Network

The parameters of each block of the task network are modulated using the task-specific parameters

τ = {τi | i = 1, · · · , N} generated by the modulation network, which can generate a mode-aware

initialization in the parameter space f(x; θ, τ). After the modulation step, few steps of gradient descent

are performed on the meta-learned prior parameters of the task network to further optimize the objective

function for a target task Ti. Note that the task-specific parameters τi are kept fixed and only the meta-

learned prior parameters of the task network are updated. We describe the concrete procedure in the

form of the pseudo-code as shown in Algorithm 1. The same procedure of modulation and gradient-based

optimization is used both during meta-training and meta-testing time.

Detailed network architectures and training hyper-parameters are different by the domain of applica-

tions, we defer the complete details to Appendix.

4.5 Experiments

We evaluate our method (MMAML) and baselines in a variety of domains including regression, image

classification, and reinforcement learning, under the multimodal task distributions. We consider the

following model-agnostic meta-learning baselines:

120

Table 4.1: Mean square error (MSE) on the multimodal 5-shot regression with 2, 3, and 5 modes. A
Gaussian noise with µ = 0 and σ = 0.3 is applied. Multi-MAML uses ground-truth task modes to select
the corresponding MAML model. Our method (with FiLM modulation) outperforms other methods by a
margin.

Method

2 Modes 3 Modes 5 Modes

Post Modulation Post Adaptation Post Modulation Post Adaptation Post Modulation Post Adaptation

MAML [77] - 1.085 - 1.231 - 1.668

Multi-MAML - 0.433 - 0.713 - 1.082

LSTM Learner 0.362 - 0.548 - 0.898 -

Ours: MMAML (Softmax) 1.548 0.361 2.213 0.444 2.421 0.939

Ours: MMAML (FiLM) 2.421 0.336 1.923 0.444 2.166 0.868

• MAML [77] represents the family of model-agnostic meta-learners. The architecture of MAML on

each individual domain is designed to be the same as task network in MMAML.

• Multi-MAML consists of M (the number of modes) MAML models and each of them is specifically

trained on the tasks sampled from a single mode. The performance of this baseline is evaluated by

choosing models based on ground-truth task-mode labels. This baseline can be viewed as the upper-

bound of performance for MAML. If it outperforms MAML, it indicates that MAML’s performance is

degenerated due to the multimodality of task distributions. Note that directly comparing the other

algorithms to Multi-MAML is not fair as it uses additional information which is not available in real

world scenarios.

Note that we aim to develop a general model-agnostic meta-learning framework and therefore the

comparison to methods that achieved great performance on only an individual domain are omitted. A more

detailed discussion can be found in Appendix (Section 4.7).

4.5.1 Regression Experiments

Setups. We experiment with our models in multimodal few-shot regression. In our setup, five pairs of

input/output data {xk, yk}k=1,...,K are sampled from a one dimensional function and provided to a learning

121

Data Points Ground Truth MAML MultiMAML MMAML

Sinusoidal Linear Quadratic Transformed ℓ1 Norm Tanh

(a) MMAML post modulation vs. other prior models

(b) MMAML post adaptation vs. other posterior models

Figure 4.2: Qualitative Visualization of Regression on Five-modes Simple Functions Dataset. (a): We compare
the predicted function shapes of modulated MMAML against the prior models of MAML and Multi-MAML, before
gradient updates. Our model can fit the target function with limited observations and no gradient updates. (b): The
predicted function shapes after five steps of gradient updates, MMAML is qualitatively better. More visualizations in
Appendix (Section 4.7).

model. The model is asked to predict L output values yq1, ..., y
q
L for input queries xq1, ..., x

q
L. To construct the

multimodal task distribution, we set up five different functions: sinusoidal, linear, quadratic, transformed ℓ1

norm, and hyperbolic tangent functions, and treat them as discrete task modes. We then evaluate three

different task combinations with two functions, three functions and five functions in them. For each task,

five pairs of data are sampled and Gaussian noise is added to the output value y, which further increases

the difficulty of identifying which function generated the data. Please refer to Appendix (Section 4.7) for

details and parameters for regression experiments.

Baselines and Our Approach. As mentioned before, we have MAML and Multi-MAML as two baseline

methods, both with MLP task networks. Our method (MMAML) augments the task network with a

modulation network. We choose to use an LSTM to serve as the modulation network due to its nature

as good at handling sequential inputs and generate predictive outputs. Data points (sorted by x value)

are first input to this network to generate task-specific parameters that modulate the task network. The

122

modulated task network is then further adapted using gradient-based optimization. Two variants of

modulation operators – softmax and FiLM are explored to be used in our approach. Additionally, to study

the effectiveness of the LSTM model, we evaluate another baseline (referred to as the LSTM Learner) that

uses the LSTM as the modulation network (with FiLM) but does not perform gradient-based updates. Please

refer to Appendix Section 4.7 for concrete specification of each model.

Results. The quantitative results are shown in Table 4.1. We observe that MAML has the highest error

in all settings and that incorporating task identity (Multi-MAML) can improve over MAML significantly.

This suggests that MAML degenerates under multimodal task distributions. The LSTM learner outperforms

both MAML and Multi-MAML, showing that the sequence model can effectively tackle this regression task.

MMAML improves over the LSTM learner significantly, which indicates that with a better initialization

(produced by the modulation network), gradient-based optimization can lead to superior performance.

Finally, since FiLM outperforms Softmax consistently in the regression experiments, we use it for as the

modulation method in the rest of experiments.

We visualize the predicted function shapes of MAML, Multi-MAML and MMAML (with FiLM) in Figure

4.2. We observe that modulation can significantly modify the prediction of the initial network to be close

to the target function (see Figure 4.2 (a)). The prediction is then further improved by gradient-based

optimization (see Figure 4.2 (b)). tSNE [180] visualization of the task embedding (Figure 4.3) shows that our

embedding learns to separate the input data of different tasks, which can be seen as a evidence of the mode

identification capability of MMAML.

4.5.2 Image Classification

Setup. The task of few-shot image classification considers the problem of classifying images into N classes

with a small number (K) of labeled samples available (i.e.N -wayK-shot). To create a multimodal few-shot

image classification task, we combine multiple widely used datasets (Omniglot [151],Mini-ImageNet [244],

123

(a) Regression (b) Image classification (c) RL Reacher (d) RL Point Mass

Figure 4.3: tSNE plots of the task embeddings produced by our model from randomly sampled tasks; marker color
indicates different modes of a task distribution. The plots (b) and (d) reveal a clear clustering according to different task
modes, which demonstrates that MMAML is able to identify the task from a few samples and produce a meaningful
embedding υ. (a) Regression: the distance between modes aligns with the intuition of the similarity of functions
(e.g. a quadratic function can sometimes be similar to a sinusoidal or a linear function while a sinusoidal function
is usually different from a linear function) (b) Few-shot image classification: each dataset (i.e. mode) forms its own
cluster. (c-d) Reinforcement learning: The numbered clusters represent different modes of the task distribution. The
tasks from different modes are clearly clustered together in the embedding space.

Table 4.2: Classification testing accuracies on the multimodal few-shot image classification with 2, 3,
and 5 modes. Multi-MAML uses ground-truth dataset labels to select corresponding MAML models. Our
method outperforms MAML and achieve comparable results with Multi-MAML in all the scenarios.

Method & Setup 2 Modes 3 Modes 5 Modes

Way 5-way 20-way 5-way 20-way 5-way 20-way

Shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot

MAML [77] 66.80% 77.79% 44.69% 54.55% 67.97% 28.22% 44.09% 54.41% 28.85%

Multi-MAML 66.85% 73.07% 53.15% 55.90% 62.20% 39.77% 45.46% 55.92% 33.78%

MMAML (ours) 69.93% 78.73% 47.80% 57.47% 70.15% 36.27% 49.06% 60.83% 33.97%

FC100 [217], CUB [317], and Aircraft [181]) to form a meta-dataset following the train/test splits used in

the prior work, similar to [303, 284]. The details of all the datasets can be found in Appendix (Section 4.7).

We train models on the meta-datasets with two modes (Omniglot and Mini-ImageNet), three modes

(Omniglot,Mini-ImageNet, and FC100), and five modes (all the five datasets). We use a 4-layer convolu-

tional network for both MAML and our task network.

Results. The results are shown in Table 4.2, demonstrating that our method achieves better results

against MAML and performs comparably to Multi-MAML. The performance gap between ours and MAML

becomes larger when the number of modes increases, suggesting our method can handle multimodal task

124

distributions better than MAML. Also, compared to Multi-MAML, our method achieves slightly better

results partially because our method learns from all the datasets yet each Multi-MAML is likely to overfit

to a single dataset with a smaller number of classes (e.g.Mini-ImageNet and FC100). This finding aligns

with the current trend of meta-learning from multiple datasets [303]. The detailed performance on each

dataset can be found in Appendix (Section 4.7).

To gain insights to the task embeddings υ produced by our model, we randomly sample 2000 5-mode 5-

way 1-shot tasks and employ tSNE to visualize υ in Figure 4.3 (b), showing that our task embedding network

captures the relationship among modes, where each dataset forms an individual cluster. This structure

shows that our task encoder learns a reasonable task embedding space, which allows the modulation

network to modulate the parameters of the task network accordingly.

4.5.3 Reinforcement Learning

(a) Point Mass (b) Reacher (c) Ant (d) Ant Goal Distribution

Figure 4.4: RL environments. Three environments are used to explore the capability of MMAML to adapt in
multimodal task distributions in RL. In all of the environments the agent is tasked to reach a goal marked by a star of
a sphere in the figures. The goals are sampled from a multimodal distribution in two or three dimensions depending
on the environment. In Point Mass (a) the agent navigates a simple point mass agent in 2-dimensions. In Reacher
(b) the agent controls a 3-link robot arm in 2-dimensions. In Ant (c) the agent controls four-legged ant robot and has
to navigate to the goal. The goals are sampled from a 2-dimensional distribution presented in figure (d), while the
agent itself is 3-dimensional.

Setup. Along with few-shot classification and regression, reinforcement learning (RL) has been a central

problem where meta-learning has been studied [263, 262, 319, 77, 193, 252]. Similarly to the other domains,

the objective inmeta-reinforcement learning (meta-RL) is to adapt to a novel task based on limited experience

with the task. For RL problems, the inner loop updates of gradient-based meta-learning take the form of

125

Figure 4.5: Visualizations of MMAML and ProMP trajectories in the 4-mode Point Mass 2D environment.
Each trajectory originates in the green star. The contours present the multimodal goal distribution. Multiple
trajectories are shown per each update step. For each column: the leftmost figure depicts the initial
exploratory trajectories without modulation or gradient adaptation applied. The middle figure presents
ProMP after one gradient adaptation step and MMAML after a gradient adaptation step and the modulation
step, which are computed based on the same initial trajectories. The figure on the right presents the
methods after two gradient adaptation steps in addition to the MMAML modulation step.

ProMP MMAML

Re
ac

he
r

An
t

Figure 4.6: Visualizations of MMAML and ProMP trajectories in the Ant and Reacher environments.
The figures represent randomly sampled trajectories after the modulation step and two gradient steps for
Reacher and three for Ant. Each frame sequence represents a complete trajectory, with the beginning,
middle and end of the trajectories captured by the left, middle and right frames respectively. Videos of the
trained agents can be found at https://vuoristo.github.io/MMAML/.

126

https://vuoristo.github.io/MMAML/

policy gradient updates. For a more detailed description of the meta-RL problem setting, we refer the reader

to [252].

We seek to verify the ability of MMAML to learn to adapt to tasks sampled from multimodal task

distributions based on limited interaction with the environment. We do so by evaluating MMAML and the

baselines on four continuous control environments using the MuJoCo physics simulator [300]. In all of

the environments, the agent is rewarded on every time step for minimizing the distance to the goal. The

goals are sampled from multimodal goal distributions with environment specific parameters. The agent

does not observe the location of the goal directly but has to learn to find it based on the reward instead. To

provide intuition on the environments, illustrations of the robots are presented in Figure 4.4. Examples of

trajectories are presented in Figure 4.5 for Point Mass and in Figure 4.6 for Ant and Reacher. Complete

details of the environments and goal distributions can be found in Appendix (Section 4.7).

Baselines and Our Approach. To identify the mode of a task distribution with MMAML, we run the initial

policy to interact with the environment and collect a batch of trajectories. These initial trajectories are used

for two purposes: computing the adapted parameters using a gradient-based update and modulating the

updated parameters based on the task embedding υ computed by the modulation network. The modulation

vectors τ are kept fixed for the subsequent gradient updates. Descriptions of the network architectures

and training hyperparameters are deferred to Appendix (Section 4.7). Due to credit-assignment problems

present in the MAML for RL algorithm [77] as identified in [252], we optimize our policies and modulation

networks with ProMP [252] algorithm, which resolves these issues.

We use ProMP both as the training algorithm for MMAML and as a baseline. Multi-ProMP is an artificial

baseline to show the performance of training one policy for each mode using ProMP. In practice we train

an agent for only one of the modes since the task distributions are symmetric and the agent is initialized to

a random pose.

127

Table 4.3: The mean and standard deviation of cumulative reward per episode for multimodal reinforcement
learning problems with 2, 4 and 6 modes reported across 3 random seeds. Multi-ProMP is ProMP trained
on an easier task distribution which consists of a single mode of the multimodal distribution to provide an
approximate upper limit on the performance on each task.

Method

Point Mass 2D Reacher Ant

2 Modes 4 Modes 6 Modes 2 Modes 4 Modes 6 Modes 2 Modes 4 Modes

ProMP [252] -397 ± 20 -523 ± 51 -330 ± 10 -12 ± 2.0 -13.8 ± 2.5 -14.9 ± 2.9 -761 ± 48 -953 ± 46

Multi-ProMP -109 ± 6 -109 ± 6 -92 ± 4 -4.3 ± 0.1 -4.3 ± 0.1 -4.3 ± 0.1 -624 ± 38 -611 ± 31

Ours -136 ± 8 -209 ± 32 -169 ± 48 -10.0 ± 1.0 -11.0 ± 0.8 -10.9 ± 1.1 -711 ± 25 -904 ± 37

Results. The results for the meta-RL experiments presented in Table 4.3 show that MMAML consistently

outperforms the unmodulated ProMP. The good performance of Multi-ProMP, which only considers a

single mode suggests that the difficulty of adaptation in our environments results mainly from the multiple

modes. We find that the difficulty of the RL tasks does not scale directly with the number of modes, i.e.

the performance gap between MMAML and ProMP for Point Mass with 6 modes is smaller than the gap

between them for 4 modes. We hypothesize the more distinct the different modes of the task distribution

are, the more difficult it is for a single policy initialization to master. Therefore, adding intermediate modes

(going from 4 to 6 modes) can in some cases make the task distribution easier to learn.

The tSNE visualizations of embeddings of random tasks in the Point Mass and Reacher domains are

presented in Figure 4.3. The clearly clustered embedding space shows that the task encoder is capable of

identifying the task mode and the good results MMAML achieves suggest that the modulation network

effectively utilizes the task embeddings to tackle the multimodal task distribution.

4.6 Conclusion

We present a novel approach that is able to leverage the strengths of both model-based and model-agnostic

meta-learners to discover and exploit the structure of multimodal task distributions. Given a few samples

from a target task, our modulation network first identifies the mode of the task distribution and then

128

modulates the meta-learned prior in a parameter space. Next, the gradient-based meta-learner efficiently

adapts to the target task through gradient updates. We empirically observe that our modulation network is

capable of effectively recognizing the task modes and producing embeddings that captures the structure

of a multimodal task distribution. We evaluated our proposed model in multimodal few-shot regression,

image classification and reinforcement learning, and achieved superior generalization performance on tasks

sampled from multimodal task distributions.

4.7 Appendix

4.7.1 Details on Modulation Operators

Attention based modulation has been widely used in modern deep learning models and has proved

its effectiveness across various tasks [340, 199, 349, 333]. Inspired by the previous works, we employed

attention to modulate the prior model. In concrete terms, attention over the outputs of all neurons (Softmax)

or a binary gating value (Sigmoid) on each neuron’s output is computed by the modulation network. These

modulation vectors τ are then used to scale the pre-activation of each neural network layer Fθ , such that

Fϕ = Fθ ⊗ τ . Note that here ⊗ represents a channel-wise multiplication.

Feature-wise linearmodulation (FiLM) has been proposed tomodulate neural networks for achieving

the conditioning effects of data from different modalities. We adopt FiLM as an option for modulating

our task network parameters. Specifically, the modulation vectors τ are divided into two components

τγ and τβ such that for a certain layer of the neural network with its pre-activation Fθ, we would have

Fϕ = Fθ ⊗ τγ + τβ . It can be viewed as a more generic form of attention mechanism. Please refer to

[231] for the complete details. In a recent few-shot image classification paper [217], FiLM modulation is

used in a metric learning model and achieves high performance. Similarly, employing FiLM modulation

129

has been shown effective on a variety of tasks such as image synthesis [136, 220, 121, 6], visual question

answering [231, 230], style transfer [71], recognition [119, 330], reading comprehension [65], etc.

4.7.2 Further Discussion on Related Works

Discussions on Task-Specific Adaptation/Modulation. As mentioned in the related work of the main

text, some recent works [217, 342, 158] leverage the task-specific adaptation or modulation to achieve

few-shot image classification. Now we discuss about them in details. [217] propose to learn a task-specific

network that adapts the weight of the visual embedding networks via feature-wise linear modulation

(FiLM) [231]. Similarly, [342] learns to perform similar task-specific adaptation for few-shot image

classification via Transformer [306]. [158] learns a visual embedding network with a task-specific metric

and task-agnostic parameters, where the task-specific metric can be update via a fixed steps of gradient

updates similar to [79]. In contrast, we aim to leverage the power of task-specific modulation to develop a

more powerful model-agnostic meta-learning framework, which is able to effectively adapt to tasks sampled

from a multimodal task distribution. Note that our proposed framework is capable of solving few-shot

regression, classification, and reinforcement learning tasks.

4.7.3 Baselines

Since we aim to develop a general model-agnostic meta-learning framework, the comparison to methods

that achieved great performance on only an individual domain are omitted.

Image Classification. While Prototypical networks [280], Proto-MAML [303], and TADAM [217] learn a

metric space for comparing samples and therefore are not directly applicable to regression and reinforcement

learning domains, we believe it would be informative to evaluate those methods on our multimodal image

classification setting. For this purpose, we refer the readers to a recent work [303] which presents extensive

130

(a) 2-Mode Regression (b) 3-Mode Regression (c) 5-Mode Regression

Figure 4.7: tSNE plots of the task embeddings produced by our model from randomly sampled tasks for regression.
We choose to visualize the corresponding task embeddings of two modes, three modes and five modes.

experiments on a similar multimodal setting with a wide range of methods, including model-based (RNN-

based) methods, model-agnostic meta-learners, and metric-based methods.

Reinforcement Learning. We believe comparing MMAML to ProMP [252] on reinforcement learning

tasks highlights the advantage of using a separate modulation network in addition to the task network,

given that in the reinforcement learning setting MMAML uses ProMP as the optimization algorithm. Besides

ProMP, Bayesian MAML [139] presents an appealing baseline for multimodal task distributions. We tried to

run Bayesian MAML on our multimodal task distributions but had technical difficulties with it. The source

code for Bayesian MAML in classification and regression is not publicly available.

4.7.4 Additional Experimental Details

4.7.4.1 Regression

Setups

To form multimodal task distributions for regression, we consider a family of functions including

sinusoidal functions (in forms of A · sinw · x+ b+ ϵ, with A ∈ [0.1, 5.0], w ∈ [0.5, 2.0] and b ∈ [0, 2π]),

linear functions (in forms of A · x + b, with A ∈ [−3, 3] and b ∈ [−3, 3]), quadratic functions (in forms

131

of A · (x − c)2 + b, with A ∈ [−0.15,−0.02] ∪ [0.02, 0.15], c ∈ [−3.0, 3.0] and b ∈ [−3.0, 3.0]), ℓ1

norm function (in forms of A · |x − c| + b, with A ∈ [−0.15,−0.02] ∪ [0.02, 0.15], c ∈ [−3.0, 3.0] and

b ∈ [−3.0, 3.0]), and hyperbolic tangent function (in forms of A · tanh(x− c) + b, with A ∈ [−3.0, 3.0],

c ∈ [−3.0, 3.0] and b ∈ [−3.0, 3.0]). Gaussian observation noise with µ = 0 and ϵ = 0.3 is added to each

data point sampled from the target task. In all the experiments, K is set to 5 and L is set to 10. We report

the mean squared error (MSE) as the evaluation criterion. Due to the multimodality and uncertainty, this

setting is more challenging comparing to [77].

Models and Optimization

In the regression task, we trained a 4-layer fully connected neural network with the hidden dimensions

of 100 and ReLU non-linearity for each layer, as the base model for both MAML and MMAML. In MMAML,

an additional model with a Bidirectional LSTM of hidden size 40 is trained to generate τ and to modulate

each layer of the base model. We used the same hyper-parameter settings as the regression experiments

presented in [77] and used Adam [140] as the meta-optimizer. For all our models, we train on 5 meta-train

examples and evaluate on 10 meta-val examples to compute the loss.

Evaluation Protocol

In the evaluation of regression experiments, we samples 25,000 tasks for each task mode and evaluate

all models with 5 gradient steps during the adaptation (if applicable), with the adaptation learning rate set

to be the one models learned with. Therefore, the results for 2 mode experiments is computed over 50,000

tasks, corresponding 3 mode experiment is computed over 75,000 tasks and 5 mode has 125,000 tasks in

total. We evaluate all methods over the function range between -5 and 5, and report the accumulated mean

squared error as performance measures.

Effect of Modulation and Adaptation

We analyze the effect of modulation and adaptation steps on the regression experiments. Specifically,

we show both the qualitative and quantitative results on the 5-mode regression task, and plot the induced

132

function curves as well as measure the Mean Squared Error (MSE) after applying modulation step or both

modulation and adaptation step. Note that MMAML starts from a learned prior parameters (denoted as

prior params), and then sequentially performs modulation and adaptation steps. The results are shown in

the Figure 4.8 and Table 4.4. We see that while inference with prior parameters itself induces high error,

adding modulation as well as further adaptation can significantly reduce such error. We can see that the

modulation step is trying to seek a rough solution that captures the shape of the target curve, and the

gradient based adaptation step refines the induced curve.

Figure 4.8: 5-mode Regression: Visualization with
Linear & Quadratic Function.

Linear Quadratic

Table 4.4: 5-mode Regression: Performance mea-
sured in mean squared error (MSE).

MMAML MSE

Prior Params 17.299

+Modulation 2.166

+ Adaptation 0.868

4.7.4.2 Image Classification

Meta-dataset

To create a meta-dataset by merging multiple datasets, we utilize five popular datasets: Omniglot,

Mini-ImageNet, FC100, CUB, and Aircraft. The detailed information of all the datasets are summarized

in Table 4.5. To fit the images from all the datasets to a model, we resize all the images to 84 × 84. The

images randomly sampled from all the datasets are shown in Figure 4.9, demonstrating a diverse set of

modes.

Hyperparameters

133

(a) Omniglot (e) Aircraft(c) FC100(b) Mini-ImageNet (d) CUB

Figure 4.9: Examples of images from all the datasets.

Table 4.5: Details of few-shot image classification datasets.

Dataset Train classes Validation classes Test classes Image size Image channel Image content

Omniglot 4112 688 1692 28 × 28 1 handwritten characters

Mini-ImageNet 64 16 20 84 × 84 3 objects

FC100 64 16 20 32 × 32 3 objects

CUB 140 30 30 ∼ 500 × 500 3 birds

Aircraft 70 15 15 ∼ 1-2 Mpixels 3 aircrafts

We present the hyperparameters for all the experiments in Table 4.6. We use the same set of hyperpa-

rameters to train our model and MAML for all experiments, except that we use a smaller meta batch-size

for 20-way tasks and train the jobs for more iterations due to the limited memory of GPUs that we have

access to.

We use 15 examples per class for evaluating the post-update meta-gradient for all the experiments,

following [77, 244]. All the trainings use the Adam optimizer [140] with default hyperparameters.

For Multi-MAML, since we train a MAML model for each dataset, it gives us the freedom to use different

sets of hyperparameters for different datasets We tried our best to find the best hyperparameters for each

dataset.

Network Architectures

134

Table 4.6: Hyperparameters for multimodal few-shot image classification experiments. We experiment
different hyperparameters for each dataset for Multi-MAML. The dataset group Grayscale includes Om-
niglot and RGB includesMini-ImageNet and FC100, CUB, and Aircraft.

Method Setup Dataset group Slow lr Fast lr Meta bach-size Number of updates Training iterations

MAML
5-way 1-shot

- 0.001 0.05 10 5 60000
5-way 5-shot

MMAML (ours)
5-way 1-shot

5-way 5-shot

MAML
20-way 1-shot

- 0.001 0.05 5 5 80000
20-way 3-shot

MMAML (ours)
20-way 1-shot

20-way 3-shot

Multi-MAML

5-way 1-shot
Grayscale

0.001

0.4 10 1

60000
RGB 0.01 4 5

5-way 5-shot
Grayscale 0.4 10 1

RGB 0.01 4 5

20-way 1-shot
Grayscale 0.1 4 5

80000
RGB 0.01 2 5

20-way 3-shot
Grayscale 0.1 4 5

RGB 0.01 2 5

Task Network. For the task network, we use the exactly same architecture as the MAML convolutional

network proposed in [77]. It consists of four convolutional layers with the channel size 32, 64, 128, and 256,

respectively. All the convolutional layers have a kernel size of 3 and stride of 2. A batch normalization layer

follows each convolutional layer, followed by ReLU. With the input tensor size of (n ·k)×84×84×3 for a n-

way k-shot task, the output feature maps after the final convolutional layer have a size of (n·k)×6×6×256.

The feature maps are then average pooled along spatial dimensions, resulting feature vectors with a size of

(n · k)× 256. A linear fully-connected layer takes the feature vector as input, and produce a classification

prediction with a size of n for n-way classification tasks.

Task Encoder. For the task encoder, we use the exactly same architecture as the task network. It consists

of four convolutional layers with the channel size 32, 64, 128, and 256, respectively. All the convolutional

layers have a kernel size of 3, stride of 2, and use valid padding. A batch normalization layer follows each

convolutional layer, followed by ReLU. With the input tensor size of (n · k) × 84 × 84 × 3 for a n-way

135

Table 4.7: The performance (classification accuracy) on themultimodal few-shot image classification

with 2 modes on each dataset.

Setup Method

Datasets

Omniglot Mini-ImageNet Overall

5-way 1-shot
MAML 89.24% 44.36% 66.80%

Multi-MAML 97.78% 35.91% 66.85%

MMAML (ours) 94.90% 44.95% 69.93%

5-way 5-shot
MAML 96.24% 59.35% 77.79%

Multi-MAML 98.48% 47.67% 73.07%

MMAML (ours) 98.47% 59.00% 78.73%

20-way 1-shot
MAML 55.36% 15.67% 35.52%

Multi-MAML 91.59% 14.71% 53.15%

MMAML (ours) 83.14% 12.47% 47.80%

Table 4.8: The performance (classification accuracy) on themultimodal few-shot image classification

with 3 modes on each dataset.

Setup Method

Datasets

Omniglot Mini-ImageNet FC100 Overall

5-way 1-shot
MAML 86.76% 43.27% 33.29% 54.55%

Multi-MAML 97.78% 35.91% 34.00% 55.90%

MMAML (ours) 93.67% 41.07% 33.67% 57.47%

5-way 5-shot
MAML 95.11% 61.48% 47.33% 67.97%

Multi-MAML 98.48% 47.67% 40.44% 62.20%

MMAML (ours) 99.56% 60.67% 50.22% 70.15%

20-way 1-shot
MAML 57.87% 15.06% 11.74% 28.22%

Multi-MAML 91.59% 14.71% 13.00% 39.77%

MMAML (ours) 85.00% 13.00% 10.81% 36.27%

k-shot task, the output feature maps after the final convolutional layer have a size of (n · k)× 6× 6× 256.

The feature maps are then average pooled along spatial dimensions, resulting feature vectors with a size

of (n · k) × 256. To produce an aggregated embedding vector from all the feature vectors representing

all samples, we perform an average pooling, resulting a feature vector with a size of 256. Finally, a fully-

connected layer followed by ReLU takes the feature vector as input, and produce a task embedding vector

υ with a size of 128.

136

Table 4.9: The performance (classification accuracy) on themultimodal few-shot image classification

with 5 modes on each dataset.

Setup Method

Datasets

Omniglot Mini-ImageNet FC100 CUB Aircraft Overall

5-way 1-shot
MAML 83.63% 37.78% 33.70% 86.96% 36.74% 35.48%

Multi-MAML 97.78% 35.91% 34.00% 93.44% 32.03% 27.59%

MMAML (ours) 91.48% 42.89% 32.59% 93.56% 38.30% 36.82%

5-way 5-shot
MAML 89.41% 51.26% 43.41% 82.30% 45.80% 43.92%

Multi-MAML 98.48% 47.67% 40.44% 98.56% 45.70% 47.29%

MMAML (ours) 97.96% 51.29% 44.08% 97.88% 53.80% 51.53%

20-way 1-shot
MAML 59.10% 15.49% 11.75% 59.45% 16.31% 31.57%

Multi-MAML 91.59% 14.71% 13.00% 85.46% 18.87% 30.72%

MMAML (ours) 86.28% 14.35% 11.59% 91.86% 24.05% 30.89%

(a) 2-mode classification (b) 3-mode classification (c) 5-mode classification

Figure 4.10: tSNE plots of task embeddings produced in multimodal few-shot image classification domain. (a) 2-mode
5-way 1-shot (b) 3-mode 5-way 1-shot (c) 5-mode 5-way 5-shot.

Modulation MLPs . Since the task network consists of four convolutional layers with the channel size

32, 64, 128, and 256 and modulating each of them requires producing both τγ and τβ , we employ four linear

fully-connected layers to convert the task embedding vector υ to {τγ1 , τβ1} (with a dimension of 32), {τγ2 ,

τβ2} (with a dimension of 64), {τγ3 , τβ3} (with a dimension of 128), and {τγ4 , τβ4} (with a dimension of

256). Note the modulation for each layer is performed by θi ⊙ γi + βi, where ⊙ denotes the Hadamard

product.

137

(a) Point Mass 2 Modes (b) Point Mass 4 Modes (c) Point Mass 6 Modes

(a) Reacher 2 Modes (b) Reacher 4 Modes (c) Reacher 6 Modes

(a) Ant 2 Modes (a) Ant 4 Modes

Figure 4.11: Training curves for MMAML and ProMP in reinforcement learning environments. The curves indicate
the average return per episode after gradient-based updates and modulation. The shaded region indicates standard
deviation across three random seeds. The curves have been smoothed by averaging the values within a window of 10
steps.

4.7.4.3 Reinforcement Learning

Environments

The training curves for all environments are presented in Figure 4.11.

Point Mass . We consider three variants of the Point Mass environment with 2, 4, and 6 modes. The

agent controls a point mass by outputting changes to the velocity. At every time step the agent receives

the negative euclidean distance to the goal as the reward. The goals are sampled from a multimodal goal

distribution by first selecting the mode center and then adding Gaussian noise to the goal location. In the 4

mode variant the modes are the points (−5,−5), (−5, 5), (5,−5), (5, 5). In the 2 mode variant the modes

are the points (−5,−5), (5, 5). In the 6 mode variant the modes are the vertices of a regular hexagon with

138

at distance 5 from the origin. All variants have noise scale of 2.0. Visualizations of agent trajectories can be

found in Figure 4.13.

Reacher . We consider three variants of the Reacher environment with 2, 4, and 6 modes. The agent

controls a 2-dimensional robot arm with three links simulated in the MuJoCo [300] simulator. The goal

distribution is similar to the goal distributions in Point Mass but different parameters are used to match

the scale of the environment. The reward for the environment is

R(s, a) = −1 ∗ (xpoint − xgoal)
2 − ∥a∥2

where xpoint is the location of the point of the arm, xgoal if the location of the goal and a is the action chosen

by the agent. The modes of the goal distribution in the 4 mode variant are located at (−0.225,−0.225),

(0.225,−0.225), (−0.225, 0.225), (0.225, 0.225) and the goal noise has scale of 0.1. In the 2 mode variant

the modes are located at (−0.225,−0.225), (0.225, 0.225) and the noise scale is 0.1. In the 6 mode variant

the mode centers are the vertices of a regular hexagon with distance to the origin of 0.318 and the noise

scale is 0.1.

Ant . We consider two variants of the Ant environment with two and four modes. The agent controls

an ant robot with four limbs simulated in the MuJoCo [300] simulator. The reward for the environment is

R(s, a) = −1 ∗ (xtorso − xgoal)
2 − λcontrol ∗ ∥a∥2

where xtorso is the location of the torso of the robot, xgoal if the location of the goal, λcontrol = 0.1 is the

weighting for the control cost and a is the action chosen by the agent. The modes of the goal distribution

in the 4 mode variant are located at (−4, 0), (−2, 3.46), (2, 3.46), (4.0, 0) and the goal noise has scale of

0.8. In the 2 mode variant the modes are located at (−4.0, 0), (4.0, 0) and the noise scale is 0.8.

139

Table 4.10: Hyperparameter settings for reinforcement learning.

Environment Algorithm Training Iterations Trajectory Length Slow lr Fast lr Inner Gradient Steps Clip eps

Point Mass
MMAML

400 100 0.0005 0.01 2 0.1ProMP

Multi-ProMP

Reacher
MMAML

800 50 0.001 0.1 2 0.1ProMP

Multi-ProMP

Ant
MMAML

800 250 0.001 0.1 3 0.1ProMP

Multi-ProMP

Network Architectures and Hyperparameters

For all RL experiments we use a policy network with two 64-unit hidden layers. The modulation

network in RL tasks consists of a GRU-cell and post processing layers. The inputs to the GRU are the

concatenated observations, actions and reward for each trajectory. The trajectories are processed separately.

An MLP is used to process the last hidden states of each trajectory. The outputs of the MLPs are averaged

and used by another MLP to compute the modulation vectors τ . All MLPs have a single hidden layer of size

64.

We sample 40 tasks for each update step. For each gradient step for each task we sample 20 trajectories.

The hyperparameters, which differ from setting to setting are presented in Table 4.10.

4.7.5 Additional Experimental Results

4.7.5.1 Regression

We show visualization of embeddings for regression experiments with a varying number of task modes as

Figure 4.7. We observe a linear separation in the two task modes and three task modes scenarios, which

indicates that our method is capable of identifying data from different task modes. On the visualization of

five task mode, we observe that data from linear, transformed ℓ1 norm and hyperbolic tangent functions

140

cluttered. This is due to the fact that those functions are very similar to each other, especially with the

Gaussian noise we added in the output space.

Data Points Ground Truth MAML MultiMAML MMAML

Sinusoidal Linear Quadratic Transformed ℓ1 Norm Tanh

Figure 4.12: Additional qualitative results of the regression tasks. MMAML after adaptation vs. other posterior
models.

141

4.7.5.2 Image Classification

We provide the detailed performance of our method and the baselines on each individual dataset for all 2, 3,

and 5 mode experiments, shown in Table 4.7, Table 4.8, and Table 4.9, respectively. Note that the main paper

presents the overall performance (the last columns of each table) on each of 2, 3, and 5 mode experiments.

We found the results on Omniglot and Mini-ImageNet demonstrate similar tendency shown in [303].

Note that the performance of Omniglot and FC100 might be slightly different from the results reported in

the related papers because (1) all the images are resized and tiled along the spatial dimensions, (2) different

hyperparamters are used, and (3) different numbers of training iterations.

Additional tSNE plots for predicted task embeddings of 2-mode 5-way 1-shot classification, 3-mode

5-way 1-shot classification, and 5-mode 20-way 1-shot classification are shown in Figure 4.10.

4.7.5.3 Reinforcement Learning

Additional trajectories sampled from the 2D navigation environment are presented in Figure 4.13.

142

Figure 4.13: Additional trajectories sampled from the point mass environment with MMAML and ProMP for
six tasks. The contour plots represents the multimodal task distribution. The stars mark the start and goal
locations. The curves depict five trajectories sampled using each method after zero, one and two update
steps. In the figure, the modulation step takes place between the initial policy and the step after one update.

143

(a) 2 Modes 5-way trainings

(b) 2 Modes 20-way trainings

(c) 3 Modes 5-way trainings

(d) 3 Modes 20-way trainings

(e) 5 Modes 5-way trainings

(f) 5 Modes 20-way trainings

Figure 4.14: Training curves of MAML and our method for few-shot image classification. We show the losses and
classification accuracies for training and validation tasks after adaptation. MAML trainings are less stable, while ours
curves are smoother.

144

(a) 5-way 1-shot trainings

(b) 5-way 5-shot trainings

(c) 20-way 1-shot trainings

Figure 4.15: Training curves of Multi-MAML for few-shot image classification. We show the losses and classification
accuracies for training and validation tasks after adaptation.

145

Chapter 5

Meta-Learning on Long-Horizon and Sparse-Reward Tasks

5.1 Introduction

In recent years, deep reinforcement learning methods have achieved impressive results in robot learning [98,

15, 134]. Yet, existing approaches are sample inefficient, thus rendering the learning of complex behaviors

through trial and error learning infeasible, especially on real robot systems. In contrast, humans are capable

of effectively learning a variety of complex skills in only a few trials. This can be greatly attributed to our

ability to learn how to learn new tasks quickly by efficiently utilizing previously acquired skills.

Can machines likewise learn to how to learn by efficiently utilizing learned skills like humans? Meta-

reinforcement learning (meta-RL) holds the promise of allowing RL agents to acquire novel tasks with

improved efficiency by learning to learn from a distribution of tasks [77, 243]. In spite of recent advances in

Figure 5.1: Overview. We propose a method that jointly leverages (1) a large offline dataset of prior
experience collected across many tasks without reward or task annotations and (2) a set of meta-training
tasks to learn how to quickly solve unseen long-horizon tasks. Our method extracts reusable skills from the
offline dataset and meta-learn a policy to quickly use them for solving new tasks.

146

the field, most existing meta-RL algorithms are restricted to short-horizon, dense-reward tasks. To facilitate

efficient learning on long-horizon, sparse-reward tasks, recent works aim to leverage experience from

prior tasks in the form of offline datasets without additional reward and task annotations [179, 232, 42].

While these methods can solve complex tasks with substantially improved sample efficiency over methods

learning from scratch, millions of interactions with environments are still required to acquire long-horizon

skills.

In this work, we aim to take a step towards combining the capabilities of both learning how to quickly

learn new tasks while also leveraging prior experience in the form of unannotated offline data (see Figure

5.1). Specifically, we aim to devise a method that enables meta-learning on complex, long-horizon tasks and

can solve unseen target tasks with orders of magnitude fewer environment interactions than prior works.

We propose to leverage the offline experience by extracting reusable skills – short-term behaviors that

can be composed to solve unseen long-horizon tasks. We employ a hierarchical meta-learning scheme in

which we meta-train a high-level policy to learn how to quickly reuse the extracted skills. To efficiently

explore the learned skill space during meta-training, the high-level policy is guided by a skill prior which is

also acquired from the offline experience data.

We evaluate our method and prior approaches in deep RL, skill-based RL, meta-RL, and multi-task

RL on two challenging continuous control environments: maze navigation and kitchen manipulation,

which require long-horizon control and only provides sparse rewards. Experimental results show that our

method can efficiently solve unseen tasks by exploiting meta-learning tasks and offline datasets, while prior

approaches require substantially more samples or fail to solve the tasks.

In summary, the main contributions of this paper are threefold:

• To the best of our knowledge, this is the first work to combine meta-reinforcement learning algorithms

with task-agnostic offline datasets that do not contain reward or task annotations.

147

• We propose a method that combines meta-learning with offline data by extracting learned skills and

a skill prior as well as meta-learning a hierarchical skill policy regularized by the skill prior.

• We empirically show that our method is significantly more efficient at learning long-horizon sparse-

reward tasks compared to prior methods in deep RL, skill-based RL, meta-RL, and multi-task RL.

5.2 Related Work

Meta-Reinforcement Learning. Meta-RL approaches [70, 319, 77, 345, 252, 102, 316, 204, 53, 54, 243,

315, 338, 354, 122, 355, 174] hold the promise of allowing learning agents to quickly adapt to novel tasks

by learning to learn from a distribution of tasks. Despite the recent advances in the field, most existing

meta-RL algorithms are limited to short-horizon and dense-reward tasks. In contrast, we aim to develop a

method that can meta-learn to solve long-horizon tasks with sparse rewards by leveraging offline datasets.

Offline datasets. Recently, many works have investigated the usage of offline datasets for agent training.

In particular, the field of offline reinforcement learning [163, 275, 150, 346] aims to devise methods that can

perform RL fully offline from pre-collected data, without the need for environment interactions. However,

these methods require target task reward annotations on the offline data for every new tasks that should be

learned. These reward annotations can be challenging to obtain, especially if the offline data is collected

from a diverse set of prior tasks. In contrast, our method is able to leverage offline datasets without any

reward annotations.

Offline Meta-RL. Another recent line of research aims to meta-learn from static, pre-collected datasets

including reward annotations [196, 238, 68]. After meta-training with the offline datasets, these works

aim to quickly adapt to a new task with only a small amount of data from that new task. In contrast to

the aforementioned offline RL methods these works aim to adapt to unseen tasks and assume access to

only limited data from the new tasks. However, in addition to reward annotations, these approaches often

148

require that the offline training data is split into separate datasets for each training tasks, further limiting

the scalability.

Skill-based Learning. An alternative approach for leveraging offline data that does not require reward

or task annotations is through the extraction of skills – reusable short-horizon behaviors. Methods for

skill-based learning recombine these skills for learning unseen target tasks and converge substantially

faster than methods that learn from scratch [160, 108, 269]. When trained from diverse datasets these

approaches can extract a wide repertoire of skills and learn complex, long-horizon tasks [191, 179, 232, 4,

42, 233]. Yet, although they are more efficient than training from scratch, they still require a large number

of environment interactions to learn a new task. Our method instead combines skills extracted from offline

data with meta-learning, leading to significantly improved sample efficiency.

5.3 Problem Formulation and Preliminaries

Our approach builds on prior work for meta-learning and learning from offline datasets and aims to combine

the best of both worlds. In the following we will formalize our problem setup and briefly summarize relevant

prior work.

Problem Formulation. Following prior work on learning from large offline datasets [179, 232, 233], we

assume access to a dataset of state-action trajectories D = {st, at, ...} which is collected either across a

wide variety of tasks or as “play data” with no particular task in mind. We thus refer to this dataset as

task-agnostic. With a large number of data collection tasks, the dataset covers a wide variety of behaviors

and can be used to accelerate learning on diverse tasks. Such data can be collected at scale, e.g. through

autonomous exploration [108, 269, 57], human teleoperation [259, 101, 183, 179], or from previously trained

agents [87, 100]. We additionally assume access to a set of meta-training tasks T = {T1, . . . , TN}, where

each task is represented as a Markov decision process (MDP) defined by a tuple {S,A,P, r, ρ, γ} of states,

actions, transition probability, reward, initial state distribution, and discount factor.

149

Our goal is to leverage both, the offline dataset D and the meta-training tasks T, to accelerate the

training of a policy π(a|s) on a target task T ∗ which is also represented as an MDP. Crucially, we do not

assume that T ∗ is a part of the set of training tasks T, nor that D contains demonstrations for solving T ∗.

Thus, we aim to design an algorithm that can leverage offline data and meta-training tasks for learning

how to quickly compose known skills for solving an unseen target task. Next, we will describe existing

approaches that either leverage offline data or meta-training tasks to accelerate target task learning. Then,

we describe how our approach takes advantage of the best of both worlds.

Skill-based RL. One successful approach for leveraging task-agnostic datasets for accelerating the learning

of unseen tasks is though the transfer of reusable skills, i.e. short-horizon behaviors that can be composed

to solve long-horizon tasks. Prior work in skill-based RL called Skill-Prior RL (SPiRL, Pertsch, Lee, and Lim

[232]) proposes an effective way to implement this idea. Specifically, SPiRL uses a task-agnostic dataset to

learns two models: (1) a skill policy π(a|s, z) that decodes a latent skill representation z into a sequence

of executable actions and (2) a prior over latent skill variables p(z|s) which can be leveraged to guide

exploration in skill space. SPiRL uses these skills for learning new tasks efficiently by training a high-level

skill policy π(z|s) that acts over the space of learned skills instead of primitive actions. The target task

RL objective extends Soft Actor Critic (SAC, Haarnoja et al. [104]), a popular off-policy RL algorithm, by

guiding the high-level policy with the learned skill prior:

max
π

∑

t

E(st,zt)∼ρπ

[
r(st, zt)− αDKL

(
π(z|st), p(z|st)

)]
. (5.1)

Here DKL denotes the Kullback-Leibler divergence between the policy and skill prior, and α is a weighting

coefficient.

Off-Policy Meta-RL. Rakelly et al. [243] introduced an off-policy meta-RL algorithm called probabilistic

embeddings for actor-critic RL (PEARL) that leverages a set of training tasks T to enable quick learning of

150

Figure 5.2: Method Overview. Our proposed skill-based meta-RL method has three phases. (1) Skill
Extraction: learns reusable skills from snippets of task-agnostic offline data through a skill extractor
(yellow) and low-level skill policy (blue). Also trains a prior distribution over skill embeddings (green).
(2) Skill-based Meta-training: Meta-trains a high-level skill policy (red) and task encoder (purple)
while using the pre-trained low-level policy. The pre-trained skill prior is used to regularize the high-level
policy during meta-training and guide exploration. (3) Target Task Learning: Leverages the meta-trained
hierarchical policy for quick learning of an unseen target task. After conditioning the policy by encoding a
few transitions c∗ from the target task T ∗, we continue fine-tuning the high-level skill policy on the target
task while regularizing it with the pre-trained skill prior.

new tasks. Specifically, PEARL leverages the meta-training tasks for learning a task encoder q(e|c). This

encoder takes in a small set of state-action-reward transitions c and produces a task embedding e. This

embedding is used to condition the actor π(a|s, z) and critic Q(s, a, e). In PEARL, actor, critic and task

encoder are trained by jointly maximizing the obtained reward and the policy’s entropyH [104]:

max
π

ET ∼pT ,e∼q(·|cT)

[∑

t

E(st,at)∼ρπ|e

[
rT (st, at) + αH

(
π(a|st, e)

)]]
. (5.2)

Additionally, the task embedding output of the task encoder is regularized towards a constant prior

distribution p(e).

5.4 Approach

We propose Skill-based Meta-Policy Learning (SiMPL), an algorithm for jointly leveraging offline data as

well as a set of meta-training tasks to accelerate the learning of unseen target tasks. Our method has three

phases: (1) skill extraction: we extract reusable skills and a skill prior from the offline data (Section 5.4.1),

151

(2) skill-based meta-training: we utilize the meta-training tasks to learn how to leverage the extracted

skills and skill prior to efficiently solve new tasks (Section 5.4.2), (3) target task learning: we fine-tune

the meta-trained policy to rapidly adapt to solve an unseen target task (Section 5.4.3). An illustration of the

proposed method is shown in Figure 5.2.

5.4.1 Skill Extraction

To acquire a set of reusable skills from the offline dataset D, we leverage the skill extraction approach

proposed in Pertsch, Lee, and Lim [232]. Concretely, we jointly train (1) a skill encoder q(z|s0:K , a0:K−1)

that embeds anK-steps trajectory randomly cropped from the sequences inD into a low-dimensional skill

embedding z, and (2) a low-level skill policy π(at|st, z) that is trained with behavioral cloning to reproduce

the action sequence a0:K−1 given the skill embedding. To learn a smooth skill representation, we regularize

the output of the skill encoder with a unit Gaussian prior distribution, and weight this regularization by a

coefficient β [113]:

max
q,π

Ez∼q

[K−1∏

t=0

log π(at|st, z)
︸ ︷︷ ︸

behavioral cloning

−βDKL
(
q(z|s0:K , a0:K−1),N (0, I)

)

︸ ︷︷ ︸
embedding regularization

]
. (5.3)

Additionally, we follow Pertsch, Lee, and Lim [232] and learn a skill prior p(z|s) that captures the distribution

of skills likely to be executed in a given state under the training data distribution. The prior is trained

to match the output of the skill encoder: minpDKL
(
⌊q(z|s0:K , a0:K−1)⌋, p(z|s0)

)
. Here ⌊·⌋ indicates that

gradient flow is stopped into the skill encoder for training the skill prior.

5.4.2 Skill-based Meta-Training

We aim to learn a policy that can quickly learn to leverage the extracted skills to solve new tasks. We

leverage off-policy meta-RL (see Section 5.3) to learn such a policy using our set of meta-training tasks T.

152

Similar to PEARL [243], we train a task-encoder that takes in a set of sampled transitions and produces

a task embedding e. Crucially, we leverage our learned skills by training a task-embedding-conditioned

policy over skills instead of primitive actions: π(z|s, e), thus equipping the policy with a set of useful

pre-trained behaviors and reducing the meta-training task to learning how to combine these behaviors

instead of learning them from scratch. We find that this usage of offline data through learned skills is crucial

for enabling meta-training on complex, long-horizon tasks (see Section 5.5).

Prior work has shown that the efficiency of RL on learned skill spaces can be substantially improved by

guiding the policy with a learned skill prior [232, 4]. Thus, instead of regularizing with a maximum entropy

objective as done in prior work on off-policy meta-RL [243], we propose to regularize the meta-training

policy with our pre-trained skill prior, leading to the following meta-training objective:

max
π

ET ∼pT ,e∼q(·|cT)

[∑

t

E(st,zt)∼ρπ|e

[
rT (st, zt)− αDKL

(
π(z|st, e), p(z|st)

)]]
. (5.4)

where α determines the strength of the prior regularization. We automatically tune α via dual gradient

descent by choosing a target divergence δ between policy and prior [232].

To compute the task embedding e, we used multiple different sizes of c. We found that we can increase

training stability by adjusting the strength of the prior regularization to the size of the conditioning set.

Intuitively, when the high-level policy is conditioned on only a few transitions, i.e. when the set c is small,

it has only little information about the task at hand and should thus be regularized stronger towards the

task-agnostic skill prior. Conversely, when c is large, the policy likely has more information about the

target task and thus should be allowed to deviate from the skill prior more to solve the task, i.e. have a

weaker regularization strength.

To implement this intuition, we employ a simple approach: we define two target divergences δ1 and

δ2 and associated auto-tuned coefficients α1 and α2 with δ1 < δ2. We regularize the policy using the

153

larger coefficient α1 with small conditioning transition set and otherwise we regularize using the smaller

coefficient α2. We found this technique simple yet sufficient in our experiments and leave the investigation

of more sophisticated regularization approaches for future work.

5.4.3 Target Task Learning

When a target task is given, we aim to leverage the meta-trained policy for quickly learning how to solve it.

Intuitively, the policy should first explore different skill options to learn about the task at hand and then

rapidly narrow its output distribution to those skills that solve the task. We implement this intuition by first

collecting a small set of conditioning transitions c∗ from the target task by exploring with the meta-trained

policy. Since we have no information about the target task at this stage, we explore the environment by

conditioning our pre-trained policy with task embeddings sampled from the task prior p(e). Then, we

encode this set of transitions into a target task embedding e∗ ∼ q(e|c∗). By conditioning our meta-trained

high-level policy on this encoding, we can rapidly narrow its skill distribution to skills that solve the given

target task: π(z|s, e∗).

Empirically, we find that this policy is often already able to achieve high success rates on the target

task. Note that only very few interactions with the environment for collecting c∗ are required for learning

a complex, long-horizon and unseen target task with sparse reward. This is substantially more efficient

than prior approaches such as SPiRL that require orders of magnitude more target task interactions for

achieving comparable performance.

To further improve the performance on the target task, we fine-tune the conditioned policy with target

task rewards while guiding its exploration with the pre-trained skill prior∗:
∗Other regularization distributions are possible during fine-tuning, e.g. the high-level policy conditioned on task prior samples

p(z|s, e ∼ p(e)) or the target task embedding conditioned policy p(z|s, e∗) before finetuning. Yet, we found the regularization
with the pre-trained task-agnostic skill prior to work best in our experiments.

154

max
π

Ee∗∼q(·|c∗)

[∑

t

E(st,zt)∼ρπ|e∗

[
rT ∗(st, zt)− αDKL

(
π(z|st, e∗), p(z|st)

)]]
. (5.5)

In practice, we propose several techniques for stabilizing meta-training and fine-tuning: (1) adaptively

regularizing the policy based on the size of the conditioning trajectory set as described in Section 5.4.2,

(2) parameterizing the policy as a residual policy that outputs differences to the pre-trained skill prior instead

of the approach from Pertsch, Lee, and Lim [232] that directly fine-tunes the skill prior, and (3) initializing

the Q-function and α parameter during fine-tuning with meta-trained parameters instead of randomly

initialized networks. We discuss these techniques in detail in Section 5.7.4.

5.5 Experiments

Our experiments aim to answer the following questions: (1) Can our proposed method learn to efficiently

solve long-horizon, sparse reward tasks? (2) Is it crucial to utilize offline datasets to achieve this? (3) How

can we best leverage the training tasks for efficient learning of target tasks? (4) How does the training task

distribution affect the target task learning?

5.5.1 Experimental Setup

We evaluate our approach in two challenging continuous control environments: maze navigation and

kitchen manipulation environment, as illustrated in Figure 5.3. While meta-RL algorithms are typically

evaluated on tasks that span only a few dozen time steps and provide dense rewards [77, 252, 243, 355], our

tasks require to learn long-horizon behaviors over hundreds of time steps from sparse reward feedback and

thus pose a new challenge to meta-learning algorithms.

155

Meta-training Tasks Target Tasks

Meta-training Tasks Target Tasks Agent

Meta-training Tasks

Target Tasks

top burner

light switch

slide cabinet hinge cabinet

slide cabinet bottom burner

bottom burner

kettle

bottom burner light switch top burnermicrowave

kettle slide cabinet hinge cabinetlight switch

1

2

3

4

(a) Maze Navigation (b) Kitchen Manipulation

Figure 5.3: Environments. We evaluate our proposed framework in two domains that require the learning
of complex, long-horizon behaviors from sparse rewards. These environments are substantially more
complex than those typically used to evaluate meta-RL algorithms. (a) Maze Navigation: The agent needs
to navigate for hundreds of steps to reach unseen target goals and only receives a binary reward upon
task success. (b) Kitchen Manipulation: The 7DoF agent needs to execute an unseen sequence of four
subtasks, spanning hundreds of time steps, and only receives a sparse reward upon completion of each
subtask.

5.5.1.1 Maze Navigation

Environment. This 2D maze navigation domain based on the maze navigation problem in Fu et al. [87]

requires long-horizon control with hundreds of steps for a successful episode and only provides sparse

reward feedback upon reaching the goal. The observation space of the agent consists of its 2D position and

velocity and it acts via planar, continuous velocity commands.

Offline Dataset & Meta-training / Target Tasks. Following Fu et al. [87] we collect a task-agnostic

offline dataset by randomly sampling start-goal locations in the maze and using a planner to generate a

trajectory that reaches from start to goal. Note that the trajectories are not annotated with any reward

or task labels (i.e. which start-goal location is used for producing each trajectory). To generate a set of

meta-training and target tasks, we fix the agent’s initial position in the center of the maze and sample 40

random goal locations for meta-training and another set of 10 goals for target tasks. All meta-training and

target tasks use the same sparse reward formulation. More details can be found in Section 5.7.6.1.

156

5.5.1.2 Kitchen Manipulation

Environment. The FrankaKitchen environment of Gupta et al. [101] requires the agent to control a 7-DoF

robot arm via continuous joint velocity commands and complete a sequence of manipulation tasks like

opening the microwave or turning on the stove. Successful episodes span 300-500 steps and the agent is

only provided a sparse reward signal upon successful completion of a subtask.

Offline Dataset & Meta-training / Target Tasks. We leverage a dataset of 600 human-teleoperated

manipulation sequences of Gupta et al. [101] for offline pre-training. In each trajectory, the robot executes

a sequence of four subtasks. We then define a set of 23 meta-training tasks and 10 target tasks that in

turn require the consecutive execution of four subtasks (see Figure 5.3 for examples). Note that each task

consists of a unique combination of subtasks. More details can be found in Section 5.7.6.2.

5.5.2 Baselines

We compare SiMPL to prior approaches in RL, skill-based RL, meta-RL, and multi-task RL.

• SAC [104] is a state of the art deep RL algorithm. It learns to solve a target task from scratch without

leveraging the offline dataset nor the meta-training tasks.

• SPiRL [232] is a method designed to leverage offline data through the transfer of learned skills. It

acquires skills and a skill prior from the offline dataset but does not utilize the meta-training tasks.

This investigates the benefits our method can obtain from leveraging the meta-training tasks.

• PEARL [243] is a state of the art off-policy meta-RL algorithm that learns a policy which can quickly

adapt to unseen test tasks. It learns from the meta-training tasks but does not use the offline dataset.

This examines the benefits of using learned skills in meta-RL.

• PEARL-ft demonstrates the performance of a PEARL [243] model further fine-tuned on a target task

using SAC [104].

157

• Multi-task RL (MTRL) is a multi-task RL baseline which learns from the meta-training tasks by

distilling individual policies specialized in each task into a shared policy, similar to Distral [295].

Each individual policy is trained using SPiRL by leveraging skills extracted from the offline dataset.

Therefore, it utilizes both the meta-training tasks and offline dataset similar to our method. This

provides a direct comparison of multi-task learning (MTRL) from the training tasks vs. meta-learning

using them (ours).

More implementation details on the baselines can be found in Section 5.7.5.

5.5.3 Results

We present the quantitative results in Figure 5.4 and the qualitative results on the maze navigation domain

in Figure 5.5. In Figure 5.4, SiMPL demonstrates much better sample efficiency for learning the unseen

target tasks compared to all the baselines. Without leveraging the offline dataset and meta-training tasks,

SAC is not able to make learning progress on most of the target tasks. While PEARL is first trained on the

meta-training tasks, it still achieves poor performance on the target tasks and fine-tuning it (PEARL-ft)

does not yield significant improvement. We believe this is because both environments provide only sparse

rewards yet require the model to exhibit long-horizon and complex behaviors, which is known to be difficult

for meta-RL methods [196].

On the other hand, by first extracting skills and acquiring a skill prior from the offline dataset, SPiRL’s

performance consistently improves with more samples from the target tasks. Yet, it requires significantly

more environment interactions than our method to solve the target tasks since the policy is optimized

using vanilla RL, which is not designed to learn to quickly learn new tasks. While the multi-task RL (MTRL)

baseline first learns a multi-task policy from the meta-training tasks, its sample efficiency is similar to

SPiRL on target task learning, which highlights the strength of our proposed method – meta-learning from

the meta-training tasks for fast target task learning.

158

SiMPL (Ours) SPiRL MTRL PEARL-ft SACPEARL

Figure 5.4: Target Task Learning Efficiency. SiMPL demonstrates better sample efficiency compared
to all the baselines, verifying the efficacy of meta-learning on long-horizon tasks by leveraging skills and
skill prior extracted from an offline dataset. For both the two environments, we train each model on each
target task with 3 different random seeds. SiMPL and PEARL-ft first collect 20 episodes of environment
interactions (vertical dotted line) for conditioning the meta-trained policy before fine-tuning it on target
tasks.

Compared to the baselines, our method learns the target tasks much quicker. Within only a few episodes

the policy converges to solve more than 80% of the target tasks in the maze environment and two out of

four subtasks in the kitchen manipulation environment. The prior-regularized fine-tuning then continues

to improve performance. The rapidly increasing performance and the overall faster convergence show the

benefits of leveraging meta-training tasks in addition to learning from offline data: by first learning to learn

how to quickly solve tasks using the extracted skills and the skill prior, our policy can efficiently solve the

target tasks.

The qualitative results presented in Figure 5.5 show that all the methods that leverage the offline dataset

(i.e. SiMPL, SPiRL, and MTRL) effectively explore the maze in the first episode. Then, SiMPL converges

with much fewer episodes compared to SPiRL and MTRL, underlining the effectiveness of meta-training.

In contrast, PEARL-ft is not able to make learning progress, justifying the necessity of employing offline

datasets for acquiring long-horizon, complex behaviors.

159

Meta-training Tasks

Episode 0 Episodes 20 Episodes 80

SP
iR

L
O

ur
s

Meta-Training Task Target TaskTarget Task Agent Trajectory

Episode 0 Episode 20 Episode 100

SiMPL

(Ours)

SPiRL

Episode 0 Episode 20 Episode 100

PEARL-ft

MTRL

Figure 5.5: Qualitative Results. All the methods that leverage the offline dataset (i.e. SiMPL, SPiRL, and
MTRL) effectively explore the maze in the first episode. Then, SiMPL converges with much fewer episodes
compared to SPiRL and MTRL. In contrast, PEARL-ft is not able to make learning progress.

5.5.4 Meta-Training Task Distribution Analysis

In this section, we aim to investigate the effect of the meta-training task distribution on our skill-based

meta-training and target task learning phases. Specifically, we examine the effect of (1) the number of tasks

in the meta-training task distribution and (2) the alignment between a meta-training task distribution and

target task distribution. We conduct experiments and analyses in the maze navigation domain. More details

on task distributions can be found in Section 5.7.6.1.

Number of meta-training tasks. To investigate how the number of meta-training tasks affects the

performance of our method, we train our method with fewer numbers meta-training tasks (i.e. 10 and 20)

and evaluate it with the same set of target tasks. The quantitative results presented in Figure 5.6(a) suggest

that even with sparser meta-training task distributions (i.e. fewer numbers of meta-training tasks), SiMPL

is still more sample efficient compared to the best-performing baseline (i.e. SPiRL).

Meta-train / test task alignment. Weaim to examine if amodel trained on ameta-training task distribution

that aligns better/worse with the target tasks would yield improved/deteriorated performance. To this end,

we create biased meta-training / test task distributions: we create a meta-train set by sampling goal locations

from only the top 25% portion of the maze (TTrain-Top). To rule out the effect of the density of the task

160

(a) Sparser Task Distribution (b) TTrain-Top → TTarget-Top (c) TTrain-Top → TTarget-Bottom

Figure 5.6: Meta-training Task Distribution Analysis. (a) With sparser meta-training task distributions
(i.e. fewer numbers of meta-training tasks), SiMPL still achieves better sample efficiency compared to
SPiRL, highlighting the benefit of leveraging meta-training tasks. (b) When trained on a meta-training task
distribution that aligns better with the target task distribution, SiMPL achieves improved performance. (c)
When trained on a meta-training task distribution that is mis-aligned with the target tasks, SiMPL yields
worse performance. For all the analyses, we train each model on each target task with 3 different random
seeds.

distribution, we sample 10 (i.e. 40 × 25%) meta-training tasks. Then, we create two target task distributions

that have good and bad alignment with this meta-training distribution respectively by sampling 10 target

tasks from the top 25% portion of the maze (TTarget-Top) and 10 target tasks from the bottom 25% portion of

the maze (TTarget-Bottom).

Figure 5.6(b) and Figure 5.6(c) present the target task learning efficiency for models trained with good

task alignment (meta-train on TTrain-Top, learn target tasks from TTarget-Top) and bad task alignment (meta-

train on TTrain-Top, learn target tasks from TTarget-Bottom), respectively. The results demonstrate that SiMPL

can achieve improved performance when trained on a better aligned meta-training task distribution. On

the other hand, not surprisingly, SiMPL and MTRL perform slightly worse compared to SPiRL when trained

with misaligned meta-training tasks (see Figure 5.6(c)). This is expected given that SPiRL does not learn

from the misaligned meta-training tasks. In summary, from Figure 5.6, we can conclude that meta-learning

from either a diverse task distribution or a better informed task distribution can yield improved performance

for our method.

161

5.6 Conclusion

We propose a skill-based meta-RL method, dubbed SiMPL, that can meta-learn on long-horizon tasks

by leveraging prior experience in the form of large offline datasets without additional reward and task

annotations. Specifically, our method first learns to extracts reusable skills and a skill prior from the offline

data. Then, we propose to meta-trains a high-level policy that leverages these skills for efficient learning

of unseen target tasks. To effectively utilize learned skills, the high-level policy is regularized by the

acquired prior. The experimental results on challenging continuous control long-horizon navigation and

manipulation tasks with sparse rewards demonstrate that our method outperforms the prior approaches in

deep RL, skill-based RL, meta-RL, and multi-task RL. In the future, we aim to demonstrate the scalability of

our method to high-DoF continuous control problems on real robotic systems to show the benefits of our

improved sample efficiency.

5.7 Appendix

5.7.1 Meta-Reinforcement Learning Method Ablation

In this section, we compare the learning efficiency of different meta-RL algorithms with respect to the length

of the training tasks. Specifically, we hypothesize that our approach SiMPL, which extracts temporally

extended skills from offline experience, is better suited for learning long-horizon tasks than prior meta-RL

algorithms. To cleanly investigate the importance of the temporally extended skills vs. the importance of

using prior experience we include two additional comparisons to methods that leverage prior experience

for meta-RL but via flat behavioral cloning instead of through temporally extended skills:

• BC+PEARL first learns a behavior cloning (BC) policy through supervised learning from the offline

dataset. Then, analogous to our approach SiMPL, during the meta-training phase, a task encoder

162

and a meta-learned policy are meta-trained with the BC policy constrained SAC objective. For fair

comparison, we use the same residual policy parameterization as described in Section 5.7.4.1.

• BC+MAML follows the same learning procedure described above, but uses MAML [77] for meta-

training instead of PEARL. We follow the original learning objective in Finn, Abbeel, and Levine [77]

(i.e. using REINFORCE [325] for task adaptation, and using TRPO [264] for meta-policy optimization).

We compare these methods as well as the standard meta-RL approach PEARL [243] on three meta-

training tasks distributions of increasing complexity in the maze navigation environment (see Figure 5.7): (1)

short-range goals with small variance TTrain-Easy, (2) short-range goals with larger variance TTrain-Medium,

and (3) long-range goals with large variance TTrain-Hard, which we used in our original maze experiments.

By increasing variance and length of the tasks in each task distribution, we can investigate the learning

capability of the meta-RL algorithms.

We present the quantitative results in Figure 5.8 and the corresponding qualitative analysis in Figure 5.9.

On the simplest task distribution we find that all approaches can learn to solve the tasks efficiently, except

for BC+MAML. While the latter also learns to solve the task eventually (see performance upon convergence

as dashed orange line in Figure 5.8(a)) it uses on-policy meta-RL and thus requires substantially more

environment interactions during meta-training. We thus only consider the more sample efficient BC+PEARL

off-policy meta-RL method in the remaining comparisons.

On the more complex task distributions TTrain-Medium and TTrain-Hard, we find that using prior data

for meta-learning is generally beneficial: both BC+PEARL and SiMPL learn more efficiently on the task

distribution of medium difficulty TTrain-Medium, as shown in Figure 5.8(b), since the policy pre-trained from

offline data allows for more efficient exploration during meta-training. Importantly, on the hardest task

distribution TTrain-Hard, as shown in Figure 5.8(c), which consists exclusively of long-horizon tasks, we find

that only SiMPL is able to effectively learn, highlighting the importance of leveraging the offline data via

163

(a) TTrain-Easy (b) TTrain-Medium (c) TTrain-Hard

Figure 5.7: Task Distributions for Task Length Ablation. We propose three meta-training task distribu-
tions of increasing difficulty to compare different meta-RL algorithms: TTrain-Easy uses short-horizon tasks
with adjacent goal locations, making exploration easier during meta-training, TTrain-Medium uses similar
task horizon but increases the goal position variance, TTrain-Hard contains long-horizon tasks with high
variance in goal position and thus is the hardest of the tested task distributions.

temporally extended skills instead of flat behavioral cloning. This supports our intuition that the abstraction

provided by skills is particularly beneficial for meta-learning on long-horizon tasks.

5.7.2 Learning Efficiency on Target Tasks with Few Episodes of Experience

In this section, we examine the data efficiency of the compared methods on the target tasks, specifically

when provided with only a few (<20) episodes of online interaction with an unseen target task. Being able

to learn new tasks this quickly is a major strength of meta-RL approaches [77, 243]. We hypothesize that

our skill-based meta-RL algorithm SiMPL can learn similarly fast, even on long-horizon, sparse-reward

tasks.

In our original evaluations in Section 5.5, we used 20 episodes of initial exploration to condition our

meta-trained policy. In Figure 5.10, we instead compare performance of different approaches when only

provided with very few episodes of online interactions. We find that SiMPL learns to solve the unseen tasks

substantially faster than all alternative approaches. On the kitchen manipulation tasks our approach learns

to almost solve two out of four subtasks within a time span equivalent to only a few minutes of real-robot

execution time. In contrast, prior meta-RL methods struggle at making progress at all on such long-horizon

tasks, showing the benefit of combining meta-RL with prior offline experience.

164

(a) TTrain-Easy (b) TTrain-Medium (c) TTrain-Hard

Figure 5.8: Meta-Training Performance for Task Length Ablation. We find that most meta-learning
approaches can solve the simplest task distribution, but using prior experience in BC+PEARL and SiMPL
helps for the more challenging distributions (b) and (c). We find that only our approach, which uses the
prior data by extracting temporally extended skills, is able to learn the challenging long-horizon tasks
efficiently.

5.7.3 Investigating Offline Data vs. Target Domain Shift

To provide more insights on comparing SiMPL and SPiRL [232], we evaluate SiMPL in the maze navigation

task setup proposed in Pertsch, Lee, and Lim [232]. This tests whether our approach can scale to image-based

observations: Pertsch, Lee, and Lim [232] use 32 × 32px observations centered around the agent. Even

more importantly, it allows us to investigate the robustness of the approach to the domain shifts between

the offline pre-training data and the target task: we use the maze navigation offline dataset from Pertsch,

Lee, and Lim [232] which was collected on randomly sampled 20× 20 maze layouts and test on tasks in the

unseen, randomly sampled 40× 40 test maze layout from Pertsch, Lee, and Lim [232]. We visualize the

meta-training task distribution in Figure 5.11(a) and the target task distribution in Figure 5.11(b).

We compare the performance of our method to the best-performing baseline, SPiRL [232], in Figure

5.11(c). Similar to the result presented in Figure 5.4, SiMPL can learn the target task faster by combining

skills learned from the offline dataset with efficient meta-training. This shows that our approach can scale

to image-based inputs and is robust to substantial domain shifts between the offline pre-training data and

the target tasks.

165

(a) PEARL on TTrain-Easy (b) BC+PEARL on TTrain-Easy (c) SiMPL on TTrain-Easy

(d) PEARL on TTrain-Medium (e) BC+PEARL on TTrain-Medium (f) SiMPL on TTrain-Medium

(g) PEARL on TTrain-Hard (h) BC+PEARL on TTrain-Hard (i) SiMPL on TTrain-Hard

Figure 5.9: Qualitative Result of Meta-RL Method Ablation. Top. All the methods can learn to solve
short-horizon tasks TTrain-Easy. Middle. On medium-horizon tasks TTrain-Medium, PEARL struggles at
exploring further, while BC+PEARL exhibits more consistent exploration yet still fails to solve some of the
tasks. SiMPL can explore well and solve all the tasks. Bottom. On long-horizon tasksTTrain-Hard, PEARL
falls into a local minimum, focusing only on one single task on the left. BC+PEARL explores slightly better
and can solve a few more tasks. SiMPL can effectively learn all the tasks.

166

SiMPL (Ours) SPiRL MTRL PEARL SAC

Figure 5.10: Performance with Few Episodes of Target Task Interaction. We find that our skill-
based meta-RL approach SiMPL is able to learn complex, long-horizon tasks within few episodes of online
interaction with a new task while prior meta-RL approaches and non-meta-learning baselines require many
more interactions or fail to learn the task altogether.

(a) TTrain-Image-based (b) TTarget-Image-based (c) Target Task Learning Efficiency

Figure 5.11: Image-Based Maze Navigation with Distribution Shift. (a-b): Meta-training and target
task distributions. The green dots represent the goal locations of meta-training tasks and the red dots
represent the goal locations of target tasks. The yellow cross represent the initial location of the agent,
which is equivalent to the one used in Pertsch, Lee, and Lim [232]. (c): Performance on the target task. Our
approach SiMPL can leverage skills learned from offline data for efficient meta-RL on the maze navigation
task and is robust to the domain shift between offline data environments and the target environment.

167

5.7.4 Implementation Details on Our Method

In this section, we describe the additional implementation details on our proposed method. The details on

model architecture is presented in Section 5.7.4.1, followed by the training detailed described in Section

5.7.4.2.

5.7.4.1 Model Architecture

We describe the details on our model architecture in this section.

Skill Prior We followed architecture and learning procedure of Pertsch, Lee, and Lim [232] for learning

a low-level skill policy and a skill prior. Please refer to Pertsch, Lee, and Lim [232] for more details on the

architectures for learning skills and skill priors from offline datasets.

Task Encoder Following Rakelly et al. [243], our task encoder is a permutation invarient neural network.

Specifically, we adopt Set Transformer [157] that consists of layers [2× ISAB32 → PMA1 → 3×MLP]

for expressive and efficient set encoding. All the hidden layers are 128-dimensional and all attention layers

have 4 attention heads. The encoder takes a set of high-level transitions as input, where each transition

is a vector concatenation of high-level transition tuple. The output of the encoder is (µe, σe) which are

the parameters of Gaussian task posterior p(e|c) = N (e;µe, σe). We varied task vector dimension dim(e)

depends on task distribution complexity. dim(e) = 10 for Kitchen Manipulation, dim(e) = 6 for Maze

Navigation with 40 meta-training tasks, and dim(e) = 5, otherwise.

Policy We parameterize our policy with neural network. We employed 4-layer MLPs with 256 hidden

units for Maze Navigation, and 6-layer MLPs with 128 hidden unit for Kitchen Manipulation experiment.

Instead of direct parameterization of policy, the network output is added to skill-prior to make learning

more stable. Specifically, the policy network takes concatenation of (s, e) as input, and then outputs residual

168

parameters (µz, log σz) to skill-prior distribution p(z|s) = N (z|µp, σp). Resulting distribution by this

residual parameterization is π(z|s) = N (z|µp + µz, exp(log σp + log σz))

Critic The critic network takes concatenation of s, e, and skill z as input and outputs an estimation of task-

conditioned Q-value Q(s, z, e). We employ double Q networks [305] to mitigate Q-value overestimation.

The architecture of critic follows the policy.

5.7.4.2 Training Details

For all the network updates, we used Adam optimizer [140] with a learning rate of 3e− 4, β1 = 0.9, and

β2 = 0.999. We describe the training details of the skill-based meta-training phase in Section 5.7.4.2 and

the target task learning phase Section 5.7.4.2.

Skill-based Meta-training Our meta-training procedure is similar to the procedure adopted in [243].

Encoder and critics networks are updated to minimize MSE between Q-value prediction and target Q value.

Policy network is updated to optimize Equation 5.4 without updating the encoder network. All network are

updated with the average gradients of 20 randomly sampled tasks. Each batch of gradients is computed

from 1024 and 256 transitions for Maze Navigation and Kitchen Manipulation experiment, respectively.

We train our models for 10000, 18000, and 16000 episodes for the Maze Navigation experiments with 10,

20, 40 meta-training tasks, respectively, and 3450 episodes for Kitchen Manipulation.

As stated in Section 5.4.2, we apply different regularization coefficients depending on the size of

the conditioning transitions. In Maze Navigation experiment, we set target KL divergence to 0.1 for

batch that is conditioned on size 4 transitions and 0.4 for batch conditioned on size 8192 transitions. In

Kitchen Manipulation experiment, we set target KL divergence to 0.4 for bath conditioned with a size 1024

transitions while KL coefficient for batch conditioned on size 2 transitions is fixed to 0.3.

169

Target Task Learning We initialize the Q function and the auto-tuning value α with the values that

learned in the skill-based meta-training phase. The policy is initialized after observing and encoding 20

episodes obtained from the task unconditioned policy rollouts. For the target task learning phase, the target

KL δ is 1 for Maze Navigation, and 2 for Kitchen Manipulation experiments. To compute a gradient step,

256 high-level transitions are sampled from a replay buffer with size 20000. Note that we used same setup

for baselines that uses SPiRL fine-tuning (SPiRL and MTRL).

5.7.5 Implementation Details on Baselines

In this section, we describe the additional implementation details on producing the results of the baselines.

5.7.5.1 SAC

The SAC [104] baseline learns to solve a target task from scratch without leveraging the offline dataset nor

the meta-training tasks.

We initialize α to 0.1 and set the target entropy toH = −dim(A). To compute a gradient step, 4096

and 1024 environment transitions are sampled from a replay buffer for Maze Navigation and Kitchen

Navigation experiments, respectively.

5.7.5.2 PEARL and PEARL-ft

PEARL [243] learns from the meta-training tasks but does not use the offline dataset. Therefore, we directly

train PEARL models on the meta-training tasks without the phase of learning from offline datasets. We

use gradients averaged from 20 randomly sampled tasks where each task gradient is computed by batch

sampled from a per-task buffer. The target entropy is set toH = −dim(A) and α is initialized to 0.1.

While the method proposed in Rakelly et al. [243] does not fine-tune on target/meta-testing tasks,

we extend PEARL to be fine-tuned on target tasks for a fair comparison, called PEARL-ft. Since PEARL

does not use learned skills or a skill prior, the target task learning of PEARL is simply running SAC with

170

task-encoded initialization. Similar to the target task learning of our method, we initialize the Q function

and entropy coefficient α to the value learned during the meta-training phase. Also, we initialize the policy

to the task conditioned policy after observing 20 episodes of experience from the task unconditioned policy

rollouts. The hyperparameters used for fine-tuning are the same as SAC.

5.7.5.3 SPiRL

Similar to our method, we initialize the high-level policy to skill-prior while fixing low-level policy for

target task learning for SPiRL. α is initialized to 0.01 and we use the same hyperparameters for the SPiRL

models as our method.

5.7.5.4 Multi-task RL (MTRL)

Inspired by Distral [295], our multi-task RL baseline is designed to first learns a set of individual policies,

where each of them is specialized in one task; then, a shared/multi-task policy is learned by distilling the

individual polices. Since it is inefficient to learn an individual policy from scratch, we learn each individual

policy using SPiRL with learned skills and a skill prior. Then, we distill the individual policies using the

following objective :

max
π0

ET ∼pT

[∑

t

E(st,zt)∼ρπ0

[
rT (st, zt)− αDKL

(
π0(z|st, e), p(z|st)

)]]
. (5.6)

We use the same setup for α as our method, where α is auto-tuned to satisfy a target KL, δ = 0.1 for

Maze Navigation and δ = 0.2 for Kitchen Manipulation.

While the target task learning phase for MTRL is similar to ours, except that MTRL is not initialized

with a meta-trained Q function and learned α.

171

(a) Meta-training 40 Tasks (b) Meta-training 20 Tasks (c) Meta-training 10 Tasks (d) Target Tasks

Figure 5.12: Maze Meta-training and Target Task Distributions. The green dots represent the goal
locations of meta-training tasks and the red dots represent the goal locations of target tasks. The yellow
cross represent the initial location of the agent.

(a) TTrain-Top (b) TTarget-Top (c) TTarget-Bottom

Figure 5.13: Maze Meta-training and Target Task Distributions for Meta-training Task Distribution

Analysis. The green dots represent the goal locations of meta-training tasks and the red dots represent the
goal locations of target tasks. The yellow cross represent the initial location of the agent.

5.7.6 Meta-Training Tasks and Target Tasks.

In this section, we present the meta-training tasks and target tasks used in the maze navigation domain

and the kitchen manipulation domain.

5.7.6.1 Maze Navigation

The meta-training tasks and target tasks are visualized in Figure 5.12 and Figure 5.13.

5.7.6.2 Kitchen Manipulation

The meta-training tasks are:

172

• microwave→kettle→bottom burner→slide cabinet

• microwave→bottom burner→top burner→slide cabinet

• microwave→top burner→light switch→hinge cabinet

• kettle→bottom burner→light switch→hinge cabinet

• microwave→bottom burner→hinge cabinet→top burner

• kettle→top burner→light switch→slide cabinet

• microwave→kettle→slide cabinet→bottom burner

• kettle→light switch→slide cabinet→bottom burner

• microwave→kettle→bottom burner→top burner

• microwave→kettle→slide cabinet→hinge cabinet

• microwave→bottom burner→slide cabinet→top burner

• kettle→bottom burner→light switch→top burner

• microwave→kettle→top burner→light switch

• microwave→kettle→light switch→hinge cabinet

• microwave→bottom burner→light switch→slide cabinet

• kettle→bottom burner→top burner→light switch

• microwave→light switch→slide cabinet→hinge cabinet

• microwave→bottom burner→top burner→hinge cabinet

• kettle→bottom burner→slide cabinet→hinge cabinet

173

• bottom burner→top burner→slide cabinet→light switch

• microwave→kettle→light switch→slide cabinet

• kettle→bottom burner→top burner→hinge cabinet

• bottom burner→top burner→light switch→slide cabinet

The target tasks are:

• microwave→bottom burner→light switch→top burner

• microwave→bottom burner→top burner→light switch

• kettle→bottom burner→light switch→slide cabinet

• microwave→kettle→top burner→hinge cabinet

• kettle→bottom burner→slide cabinet→top burner

• kettle→light switch→slide cabinet→hinge cabinet

• kettle→bottom burner→top burner→slide cabinet

• microwave→bottom burner→slide cabinet→hinge cabinet

• bottom burner→top burner→slide cabinet→hinge cabinet

• microwave→kettle→bottom burner→hinge cabinet

174

Chapter 6

Learning from Observation

6.1 Introduction

Humans are effective at learning a task from demonstrations and applying the learned behaviors to other

situations. We achieve this by extracting the underlying structure of the task when observing others

fulfilling the task, instead of simply memorizing the demonstrator’s low-level actions [26, 116]. This

high-level task structure generalizes to new situations and thus helps us to quickly learn the task in new

situations. One intuitive and readily available instance of such high-level task structure is task progress,

measuring how much of the task the agent completed. Inspired by this insight, we propose a novel imitation

learning method that utilizes task progress for better generalization to unseen states and goals.

Typical learning from demonstration (LfD) approaches [236, 80] greedily imitate the expert policy and

thus suffer from accumulated errors causing a drift away from states seen in the demonstrations [251].

To make the imitation policy more robust to states not in demonstrations, adversarial imitation learning

methods [114, 88] encourage the agent to stay near the expert trajectories using a learned reward that

distinguishes expert and agent behaviors. However, such learned reward functions often overfit to the

expert demonstrations by learning spurious correlations between task-irrelevant features and expert/agent

labels [356], and thus suffer from generalization to slightly different initial and goal configurations from

the ones seen in the demonstrations (e.g. holdout goal regions or larger perturbation in goal sampling).

175

f�
<latexit sha1_base64="U2SR+MFZAIT/qsNTNATAdafeRwk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66Rm3OumQ94rV/yqPwdZJUFOKpCj3it/dfuKZQlKywQ1phP4qQ0nVFvOBE5L3cxgStmIDrDjqKQJmnAyv3ZKzpzSJ7HSrqQlc/X3xIQmxoyTyHUm1A7NsjcT//M6mY2vwwmXaWZRssWiOBPEKjJ7nfS5RmbF2BHKNHe3EjakmjLrAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8ecp78d69j0VrwctnjuEPvM8fi3uPGA==</latexit><latexit sha1_base64="U2SR+MFZAIT/qsNTNATAdafeRwk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66Rm3OumQ94rV/yqPwdZJUFOKpCj3it/dfuKZQlKywQ1phP4qQ0nVFvOBE5L3cxgStmIDrDjqKQJmnAyv3ZKzpzSJ7HSrqQlc/X3xIQmxoyTyHUm1A7NsjcT//M6mY2vwwmXaWZRssWiOBPEKjJ7nfS5RmbF2BHKNHe3EjakmjLrAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8ecp78d69j0VrwctnjuEPvM8fi3uPGA==</latexit><latexit sha1_base64="U2SR+MFZAIT/qsNTNATAdafeRwk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66Rm3OumQ94rV/yqPwdZJUFOKpCj3it/dfuKZQlKywQ1phP4qQ0nVFvOBE5L3cxgStmIDrDjqKQJmnAyv3ZKzpzSJ7HSrqQlc/X3xIQmxoyTyHUm1A7NsjcT//M6mY2vwwmXaWZRssWiOBPEKjJ7nfS5RmbF2BHKNHe3EjakmjLrAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8ecp78d69j0VrwctnjuEPvM8fi3uPGA==</latexit><latexit sha1_base64="U2SR+MFZAIT/qsNTNATAdafeRwk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66Rm3OumQ94rV/yqPwdZJUFOKpCj3it/dfuKZQlKywQ1phP4qQ0nVFvOBE5L3cxgStmIDrDjqKQJmnAyv3ZKzpzSJ7HSrqQlc/X3xIQmxoyTyHUm1A7NsjcT//M6mY2vwwmXaWZRssWiOBPEKjJ7nfS5RmbF2BHKNHe3EjakmjLrAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8ecp78d69j0VrwctnjuEPvM8fi3uPGA==</latexit>

= Goal Proximity

Learning Proximity Function

1.0 (Goal)0.90.80.70.6

1.0 (Goal)0.90.8

1.0 (Goal)0.90.80.7

Demo 1

Demo 2

Demo N Observations

Expert Demonstrations

Goal Proximity

Learning Policy

= ⇡✓
<latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit><latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit><latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit><latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit>

a
<latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit><latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit><latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit><latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit>

Joint Training

Proximity Reward: f�(st+1)� f�(st)
<latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit><latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit><latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit><latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit>

0.5 0.8 1.0 (Goal)

0.20.3

0.3

Agent Experience under Policy ⇡✓
<latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit><latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit><latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit><latexit sha1_base64="/GoZxCLXaZuQtcDIVt/1r515G7Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDbbSbt0sxt2J0IJ/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTKSw6LrfTmVtfWNzq7pd29nd2z+oHx51rU4Nhw7XUpteyCxIoaCDAiX0EgMsDiU8hpPbwn98AmOFVg84TSCI2UiJSHCGudT3EzHwcQzIaoN6w226c9BV4pWkQUq0B/Uvf6h5GoNCLpm1fc9NMMiYQcElzGp+aiFhfMJG0M+pYjHYIJufPKNnuTKkkTZ5KaRz9fdExmJrp3GYd8YMx3bZK8T/vH6K0XWQCZWkCIovFkWppKhp8T8dCgMc5TQnjBuR30r5mBnGMU+pCMFbfnmVdC+antv07i8brZsyjio5IafknHjkirTIHWmTDuFEk2fySt4cdF6cd+dj0Vpxyplj8gfO5w/gMZD4</latexit>

0.2 0.6

0.4

1.0 (Goal)

Rollout 1

Rollout M

Rollout 2

Predicted Goal
Proximity

0.1 (Fail)

f�(st+1)� f�(st)
<latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit><latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit><latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit><latexit sha1_base64="xmjycHbRzCQLUKYjm8PsbGBJlEA=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahRSyJCLosunFZwT6gDWEynbRDJw9mboQSsnTjr7hxoYhbP8Gdf+O0zaK2HrhwOOde7r3HiwVXYFk/RmFldW19o7hZ2tre2d0z9w9aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj24nffmRS8Sh8gHHMnIAMQu5zSkBLrnnsu714yCvKTeHMzqr4HM8pWdU1y1bNmgIvEzsnZZSj4ZrfvX5Ek4CFQAVRqmtbMTgpkcCpYFmplygWEzoiA9bVNCQBU046fSTDp1rpYz+SukLAU3V+IiWBUuPA050BgaFa9Cbif143Af/aSXkYJ8BCOlvkJwJDhCep4D6XjIIYa0Ko5PpWTIdEEgo6u5IOwV58eZm0Lmq2VbPvL8v1mzyOIjpCJ6iCbHSF6ugONVATUfSEXtAbejeejVfjw/ictRaMfOYQ/YHx9QvMzJiM</latexit>

Figure 6.1: In goal-directed tasks, states on an expert trajectory have increasing proximity toward the goal
as the expert makes progress towards fulfilling a task. Inspired by this intuition, we propose to learn a
proximity function fϕ from expert demonstrations and agent experience, which predicts goal proximity
(i.e. an estimate of temporal distance to the goal). Then, using this proximity function, we train a policy πθ
to progressively move to states with higher predicted goal proximity (italicized numbers) and eventually
reach the goal. We alternate these two learning phases to improve both the proximity function and policy,
leading to not only better generalization but also superior performance.

To learn a more generalizable and informative reward from demonstrations, we propose an imitation

learning from observation (LfO) method, which learns a task progress estimator and uses the task progress

estimate as a dense reward for training a policy as illustrated in Figure 6.1. Unlike discriminating expert and

agent behaviors by predicting binary labels in prior adversarial imitation learning methods, which is prone

to overfitting to task-irrelevant features, the task progress estimator is required to learn more task-relevant

information to precisely predict the task progress on a continuous scale. Hence, it can generalize better to

unseen states and provide more informative rewards.

As a measure of progress in goal-directed tasks, we define goal proximity, which is an estimate of

temporal distance to the goal (i.e. the number of actions required to reach the goal) and entails all semantic

information about how to reach the goal. We then train a proximity function to predict the goal proximity

from expert demonstrations and agent experience. This proximity function acts as a dense reward to guide

a reinforcement learning agent to reach states with high proximity, leading to the goal. In this paper, we

focus on learning the proximity function and policy in a state space shared by the expert and learner, and

leave generalizing to different embodiments as future work.

176

However, the predicted goal proximity can still be inaccurate on states not in the demonstrations,

resulting in unstable policy learning. To improve the accuracy of the proximity function, we continually

update it with trajectories from both the expert and learning agent. In addition, we penalize trajectories

with the uncertainty of the proximity prediction to prevent the policy from exploiting inaccurate high

proximity predictions. By leveraging the agent experience and predicting proximity function uncertainty,

the proposed method achieves more efficient and stable policy learning.

The main contribution of this paper is an LfO algorithm for goal-directed tasks with better generalization

to new goals or states not in demonstrations using goal proximity that informs an agent of the task progress.

Together with a difference-based reward and uncertainty penalty of goal proximity estimation, our method

provides more informative and robust rewards. Our extensive experiments show that the policy learned

with the goal proximity function generalizes better than the state-of-the-art LfO algorithms on various

goal-directed tasks, including navigation, locomotion, and robotic manipulation. Moreover, our method

shows comparable results with LfD methods which learn from expert actions and a goal-conditioned

imitation learning method which uses a sparse task reward.

6.2 Related Work

Imitation learning [258] aims to leverage expert demonstrations to acquire skills. While behavioral

cloning [236] is simple but effective with a large number of demonstrations, it suffers from compounding

errors caused by covariate shift [251]. On the other hand, inverse reinforcement learning (IRL) [210, 2, 353]

estimates the underlying reward from demonstrations and trains a policy through reinforcement learning

(RL) with this reward, which can better handle the compounding errors. Specifically, generative adversarial

imitation learning (GAIL) [114] shows improved demonstration efficiency by training a discriminator to

distinguish expert and agent transitions and using the discriminator output as a reward for policy training.

177

GoalGAIL [67] further improves sample efficiency for goal-directed tasks by relabeling transitions [14] and

using true environment rewards.

While these imitation learning algorithms require expert actions, imitation learning from observation

(LfO) approaches learn from state-only demonstrations, such as videos and kinesthetic demonstrations.

To imitate demonstrations without expert actions, inverse dynamics models [213, 301, 225], reachability

functions [159], or learned reward functions [74, 268, 267, 176] can be learned and used for policy training,

but training such models requires a large amount of quality data or additional test-time demonstrations.

On the other hand, state-only adversarial imitation learning [302] can imitate from a few demonstrations.

However, in such adversarial imitation learning approaches, the discriminator tends to find spurious

associations between task-irrelevant features and expert/agent labels [356]. This becomes problematic when

the agent encounters unseen states and the discriminator erroneously assigns agent behaviors low scores

based on these task-irrelevant features, providing a poor reward for the agent. To overcome finding spurious

associations, in addition to discriminating expert and agent trajectories, we propose to also estimate the

proximity to the goal, which requires more task-relevant information and thus generalizes better to new

states.

Temporal progress estimation has shown its effectiveness as an auxiliary reward for RL [188, 73, 160]

and decision making criteria [51, 16, 36]. However, these methods learn the progress estimator only from

the given demonstrations. This hinders policy learning when the progress estimator fails to generalize to

agent experience, allowing the agent to exploit inaccurate progress predictions for higher reward. Moreover,

greedily choosing an action with the highest predicted temporal progress [51, 16, 36] could lead to low

long-term returns. By incorporating online updates, uncertainty estimates, and a difference-based proximity

reward, our method robustly learns from demonstrations to solve goal-directed tasks without access to

expert actions or the true environment reward.

178

6.3 Method

In this paper, we address the problem of LfO for goal-directed tasks with a focus on generalization to

states or goals not covered in the demonstrations. Adversarial LfO methods [302, 336] suggest learning

a reward function that penalizes agent state transitions deviating from the expert trajectories. However,

these learned reward functions often focus on task-irrelevant features [356] and do not generalize to states

not in the demonstrations, leading to unsuccessful policy training.

To learn a generalizable reward, we propose to leverage task progress information freely available in

demonstrations, in terms of goal proximity, which estimates temporal distance to the goal (i.e. number of

actions required to reach the goal). Predicting precise goal proximity on a continuous scale, rather than

simply distinguishing expert and agent states, requires the model to capture task-relevant information,

allowing the proximity prediction to generalize to states not in the demonstrations (Section 6.3.2). Then, a

policy learns to reach states with higher proximity prediction, leading to the goal (Section 6.3.3). Moreover,

we propose to use the uncertainty of the proximity prediction to prevent the policy from exploiting

over-optimistic proximity predictions and yielding undesired behaviors.

6.3.1 Preliminaries

We formulate our problem as a Markov decision process [292] defined through a tuple (S,A, R, P, ρ0, γ) of

the state space S , action spaceA, reward function R(s, a, s′), transition distribution P (s′|s, a), initial state

distribution ρ0, and discounting factor γ. We define a policy π(a|s) that maps from a state s to an action a

and correspondingly moves an agent to a new state s′ according to the transition probability P (s′|s, a). The

policy is trained to maximize the sum of discounted rewards, E(s0,a0,...,sTi)∼π

[∑Ti−1
t=0 γtR(st, at, st+1)

]
,

where Ti is the variable episode length.

In imitation learning, the learner receives a set ofN expert demonstrations, De = {τ e1 , . . . , τ eN}. In this

paper, we specifically consider the LfO setup where each demonstration τ ei is a sequence of states. Moreover,

179

we assume that goal information is explicitly or implicitly included in the state s, and all demonstrations

are successful; therefore, the final state of each trajectory achieves the task goal.

6.3.2 Learning Goal Proximity Function

To effectively leverage expert demonstrations and generalize to new states or new goals, learning a

generalizable reward function is essential. In goal-directed tasks, an estimate of how close an agent is to the

goal can be utilized as a dense and direct learning signal. Moreover, predicting the continuous goal proximity

requires understanding the task structure and thus encourages finding more task-relevant features, resulting

in better generalization.

Therefore, instead of learning to simply discriminate agent and expert trajectories, we propose to

learn a goal proximity function, f : S → [0, 1], which predicts goal proximity of a state s, which is a

discounted value based on the temporal distance to the goal (i.e. inversely proportional to the number of

actions required to reach the goal). In this paper, we define goal proximity as the exponentially discounted

proximity f(st) = δ(Ti−t), where δ ∈ (0, 1) is a discounting factor and Ti is the episode length. Note that

the goal proximity function measures the temporal distance, not the spatial distance, between the current

and goal states. Therefore, a single proximity value can entail all information about the task, goal, and any

roadblocks. There are alternative ways to define goal proximity, such as linearly discounted proximity [160]

and ranking-based proximity [34, 36]. But, in this paper, we use the exponentially discounted proximity as

it performs better across most tasks (see appendix, Figure 6.8).

We train a goal proximity function fϕ parameterized by ϕ to minimize the following objective:

Lϕ = Eτei ∼De,st∼τei

[
fϕ(st)− δ(Ti−t)

]2
. (6.1)

180

Since the goal proximity function trained only on expert demonstrations can overfit to the data, we further

train the goal proximity function with online agent experience by setting the target proximity of states in

agent trajectories to 0, similar to adversarial imitation learning methods [114]:

Lϕ = Eτei ∼De,st∼τei

[
fϕ(st)− δ(Ti−t)

]2
+ Eτ∼πθ,st∼τ

[
fϕ(st)

]2
. (6.2)

By learning to predict the goal proximity, fϕ not only learns to discriminate agent and expert trajectories

(i.e. predict 0 proximity for an agent trajectory and positive proximity for an expert trajectory) but also

acquires the task information about temporal progress entailed in the trajectories. From this freely available

additional supervision, the proximity function is required to learn task-relevant features. Hence, the

resulting proximity function generalizes better to unseen states and provides more informative learning

signals to the policy as empirically shown in Section 6.4.

Due to the lack of environment reward, successful agent experience is also used as negative examples

for proximity function training, and thus the proximity function learns to predict low goal proximity even

for successful trajectories. However, early stopping and learning rate decay can ease this problem [356],

and the optimal proximity function still outputs the average of expert and agent labels, which is δ(Ti−t)/2

for ours and 0.5 for GAIL [88].

6.3.3 Training Policy with Proximity Reward

In a goal-directed task, a policy πθ aims to get close to and eventually reach the goal. We can formalize this

objective as maximizing the difference-based proximity reward Rϕ, the increase in goal proximity, at every

timestep, which corresponds to making consistent progress towards the goal:

Rϕ(st, st+1) = fϕ(st+1)− fϕ(st). (6.3)

181

Given the proximity reward Rϕ, the policy is trained to maximize the expected discounted return:

E(s0,...,sTi)∼πθ

[Ti−1∑

t=0

γtRϕ(st, st+1)

]
. (6.4)

However, a policy trained with the proximity reward can sometimes acquire undesired behaviors by

exploiting over-optimistic proximity predictions on states not seen in the expert demonstrations. This

becomes critical when the expert demonstrations are limited and cannot sufficiently cover the state space. To

avoid inaccurate predictions leading an agent to undesired states, we propose to (1) fine-tune the proximity

function with online agent experience to reduce optimistic proximity predictions; and (2) penalize agent

trajectories with high uncertainty in goal proximity prediction.

To alleviate the effect of inaccurate proximity estimation in policy training, we discourage the policy

from visiting states with uncertain proximity estimates. Specifically, we model the uncertainty Uϕ(st)

as the disagreement of an ensemble of proximity functions by computing the standard deviation of their

outputs [218, 152]. Then, we use this estimated uncertainty to penalize exploration of states with high

uncertainty. The proximity estimate fϕ(st) is the average prediction of the ensemble. With the uncertainty

penalty, the modified proximity reward can be written as:

Rϕ(st, st+1) = fϕ(st+1)− fϕ(st)− λ · Uϕ(st+1), (6.5)

where λ is a tunable hyperparameter to balance the proximity reward and uncertainty penalty. A larger λ

results in more conservative exploration outside the states covered by the expert demonstrations.

In summary, we propose to learn a goal proximity function to robustly provide a reward signal on

states or goals not covered by demonstrations. We train the goal proximity function to estimate how close

the current state is to the goal, and train a policy to maximize the goal proximity while avoiding states

182

(a) Navigation (b) Maze2D (c) Ant Reach (d) Fetch Pick (e) Fetch Push (f) HandRotate

Figure 6.2: Six goal-directed tasks are used for our experiments. (a) The agent must navigate across rooms
to reach the goal. (b) The agent needs to navigate the maze to reach the goal. (c) The ant agent must walk
towards the flag. (d, e) The robotic arm is required to pick up or push the block towards the goal (red).
(f) The dexterous robot hand needs to rotate the block in-hand to the desired rotation.

with uncertain proximity predictions. We jointly train the proximity function and policy as described in

appendix, Algorithm 2.

6.4 Experiments

In this paper, we propose a generalizable LfO algorithm that leverages task progress information (i.e. goal

proximity) freely acquired from demonstrations. Hence, in our experiments, we aim to answer the following

questions: (1) Does our method lead to policies that generalize better to states and goals not in the

demonstrations? (2) How does our method’s efficiency and performance compare against prior work in

LfO and LfD? (3) What factors contribute to the performance of our method? To answer these questions

we consider diverse goal-directed tasks: navigation, locomotion, and robotic manipulation.

6.4.1 Experimental Setup

To demonstrate the improved generalization capabilities of policies trained with the goal proximity, we

benchmark our method under two different setups: expert demonstrations are collected from (1) only a

fraction of the possible initial and goal states (e.g. 25%, 50% coverage) and (2) initial states with smaller

amounts of noise. These generalization experimental setups serve to mimic the reality that expert demon-

strations may be collected in a different setting from agent learning. For instance, due to the cost of

183

demonstration collection, the demonstrations may poorly cover the state space, which corresponds to the

setup (1). Likewise, in the setup (2), demonstrations may be collected in controlled circumstances with

little noise. Then, an agent in an actual environment would encounter more noise than presented in the

demonstrations, leading to a wider initial state distribution.

In our experiments, we use the discounting factor δ = 0.95 for the goal proximity. We use an ensemble

of 5 proximity functions to model uncertainty across all tasks. For policy optimization, we use PPO [265],

which is widely used in LfO and LfD methods, and its hyperparameters are tuned for each method and task

(see appendix, Table 6.2). Each baseline implementation is verified against the results reported in its original

paper. We train each task with 5 random seeds and report mean and standard deviation. See Section 6.6.6

for further implementation details.

6.4.2 Baselines

We compare our method to the state-of-the-art methods in LfO (BCO, GAIfO, GAIfO-s) as well as LfO with

reward (GoalGAIL) and LfD (BC, GAIL, SQIL) approaches, which require additional supervisions, such as

task reward and expert actions:

• BCO [301] learns an inverse dynamics model from environment interaction to provide action labels in

demonstrations for behavioral cloning.

• GAIfO [302] trains a discriminator with state transitions (s, s′), instead of (s, a) as in GAIL.

• GAIfO-s [336] learns a discriminator based off a single state, not a state transition as with GAIfO.

• GoalGAIL [67] uses goal reaching reward and relabeling to improve sample efficiency of GAIL.

• BC [236] fits a policy to the demonstration state-action pairs (s, a) with supervised learning.

• GAIL [114] is an adversarial imitation learning with a discriminator trained on state-action pairs (s, a)

from both expert and agent.

184

LfO LfD LfO+reward

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100
Go

al
 C

om
pl

et
io

n
(%

)

(b) Navigation 25%

0 1M 2M 3M 4M 5M
Step

0

10

20

30

40

50

60

70

Go
al

 C
om

pl
et

io
n

(%
)

(c) Maze2D 50%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(d) Ant Reach 0.05 noise

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(e) Fetch Pick 1.75x noise

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(f) Fetch Push 1.75x noise

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours (GAIL)

(g) Hand Rotate 0.35 noise

Figure 6.3: Goal completion rates of our method and baselines. The agent must generalize to a wider
state and goal distributions than seen in the demonstrations. Demonstrations cover only a part of states
(a, b) or are generated with less noise (c, d, e, f). Our method learns more stably, faster, and achieves
higher goal completion rates than prior LfO methods. Moreover, our method outperforms the LfD baselines
in Navigation, Fetch tasks, and Maze2D, and achieves comparable results in Ant Reach. GoalGAIL
performs well in Maze2D since it can easily acquire environment rewards.

• SQIL [246] is a sample-efficient imitation learning method which adds expert transitions (s, a) with

reward 1 to the replay buffer of off-policy RL and assigns 0 reward to all agent experience.

6.4.3 Navigation

We first examine the Navigation task between four rooms shown in Figure 6.2(a) to demonstrate general-

ization capability of our method, and visualize the learned goal proximity function. The agent observes

the 19× 19× 4 2D map of the maze and moves in one of four directions. In this task, the agent starting

and goal positions are randomly sampled (see an example in appendix, Figure 6.12). We provide 250 expert

demonstrations obtained using a shortest path algorithm. During demonstration collection, we hold out

185

0%, 25%, 50%, and 75% of the possible agent starting and goal positions uniformly at random. In contrast,

during agent learning and evaluation, start and goal positions are sampled from all possible positions.

Figure 6.3(b) shows that our method achieves near 100% success rate in 2M environment steps even

with demonstrations only covering 25% of starting and goal states, while other LfO methods fail to learn

the task. Although BC, GAIL, and BCO achieve success rates of about 60%, 30%, and 35%, respectively, they

show limited generalization to unseen configurations. This result shows that the learned goal proximity

function generalizes well to unseen configurations.

Figure 6.4(e) visualizes the proximity function trained with 50% coverage demonstrations and 250k

steps of agent training. Our proximity function predicts high proximity near the goal and lower proximity

when the agent is farther away from the goal. This demonstrates that our proximity function can learn the

semantic, non-euclidean relationship between high-dimensional observations and goals. Since the proximity

function is conditioned on the state, similar states are likely to have similar predicted proximity, and thus the

proximity function learns a spatially consistent measure of proximity from temporal supervision. Moreover,

as the task progress is a relative position within a trajectory, both slow and fast demonstrations result in

the same task progress. More visualizations can be found in appendix, Section 6.6.5.

Finally, we investigate our hypothesis that the goal proximity function allows for greater generalization,

which results in better performance with smaller demonstration coverages. We compare the cases where

extreme (25% coverage), moderate (50% and 75% coverage), and no generalization (100% coverage) are

required. Figure 6.3(b) and Figure 6.4 show that our method consistently achieves almost 100% success rates

in 2M steps across all coverages and is not as affected by the increasingly difficult generalization settings as

baselines. In contrast, all LfO baselines struggle to learn the task when the demonstrations do not cover all

configurations. LfD methods also shows limited generalization in 25% coverage since the discriminator

can easily learn spurious associations between the actions and labels, which hurts generalization to new

186

LfDLfO

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(b) 100% coverage

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(c) 75% coverage

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(d) 50% coverage (e) Proximity heatmap

Figure 6.4: Analyzing the effect of improved generalization as the cause for performance increase in our
method. (a) Performance with no generalization required. (b, c) Performance with increasing difference
between start and goal distributions of demonstrations and agent learning. (d) Visualization of the learned
proximity function for a fixed goal (green) in the 50% coverage case. The proximity function was evaluated
for every state on the grid; lighter cells correspond to states with higher estimated proximity to the goal.

actions. This supports our hypothesis that the goal proximity function is able to capture the task structure

and therefore, generalize better to unseen configurations.

6.4.4 Maze2D

We further evaluate ourmethod inMaze2D [87] with themediummaze, a continuous version of Navigation.

The agent observes its position, velocity, and goal position, and then outputs an x- and y-velocity to navigate

the maze. The agent starting and goal positions are randomly sampled. We collect 100 demonstrations (18k

transitions) using a planner from Fu et al. [87].

Our method outperforms LfO baselines over all demonstration coverages (see appendix, Figure 6.7).

More importantly, in the low coverage case, our method outperforms BC, which has access to expert actions,

as shown in Figure 6.3(c). This could be because our proximity function generalizes well whereas BC is not

robust to unseen states under small demonstration coverages. On the other hand, GoalGAIL shows the

best performance regardless of coverages as the task can be easily solved with the sparse reward and goal

relabeling, which is not available for our method and other baselines.

187

6.4.5 Ant Locomotion

In Ant Reach [91], the quadruped ant is tasked to reach a randomly generated goal, which is along the

perimeter of a half circle of radius 5m centered around the ant (see Figure 6.2(c)). The 132D state consists of

joint angle, velocity, contact force, and the goal position relative to the agent. We collect 1k demonstrations

(25k transitions) using the pre-trained policy (trained for 40M steps). When demonstrations are collected,

no noise is added to the initial pose of the ant whereas random noise is added to the initial pose during

policy learning, which requires the reward functions to generalize to unseen states.

In Figure 6.3(d), with 0.05 added noise, our method achieves 35% success rate while BCO, GAIfO, and

GAIfO-s achieve 1%, 2%, and 7%, respectively. This result illustrates the importance of learning proximity as

opposed to discriminating expert and agent states for generalization to unseen states. The performance of

GAIfO and GAIfO-s drops drastically with larger joint angle randomness as shown in appendix, Figure 6.7.

As Ant Reach is not as sensitive to noise in actions compared to other tasks, BC and GAIL show superior

results but our method still achieves comparable performance.

6.4.6 Robotic Manipulation

We evaluate our method in two robotic manipulation tasks with the 7-DoF Fetch robotics arm: Fetch Pick

and Fetch Push [235]. The robot must grasp and move a block to a target position for Fetch Pick, and

push a block to a target position for Fetch Push. The 16D state consists of the gripper pose, object pose,

the gripper pose relative to the object, and goal position. Both the initial and target positions of the block

are randomly initialized. We generate 1k demonstrations using a hard-coded policy, consisting of 33k and

28k transitions for Fetch Pick and Fetch Push, respectively. The policy is trained in an environment with

larger noise applied to the starting and target block positions.

In Fetch Pick, our method achieves about 80% success rate outperforming all baselines, despite LfD

methods learning with expert actions (see Figure 6.3(e)). The best performing baseline BC only obtains

188

Prox+Diff+Uncert (Ours) Prox+Diff Prox+Abs+Uncert Prox+Abs GAIfO-s GAIfO-s+Uncert GAIfO-s+Ensemble

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(b) Navigation 50%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(c) Fetch Pick 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(d) Fetch Push 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(e) Ant Reach 0.03

Figure 6.5: Analysis of the contribution of goal proximity function, uncertainty penalty, and reward
formulation to the performance. “Prox” uses the goal proximity function while “GAIfO-s” does not. “+Diff”
uses R(st, st+1) = f(st+1) − f(st) and “+Abs” uses R(st) = f(st) as a reward. “+Uncert” adds the
uncertainty penalty to the reward. “+Ensemble” uses an ensemble for the discriminator.

around 40% success rate. The high variance in performance between seeds comes from the difficulty of

learning the grasping behavior with large noise. In Fetch Push, our method outperforms baselines in

generalization to unseen states by achieving more than 90% success rate (see Figure 6.3(f)). This shows

that our proximity function is able to accelerate policy learning in continuous control environments with

superior generalization capability.

6.4.7 Dexterous Hand Manipulation

We evaluate our method in a challenging in-hand object manipulation task [235], Hand Rotate as shown

in Figure 6.2(f). In Hand Rotate, a 24-DoF Shadow Dexterous Hand must in-hand rotate a block to a

target z-axis rotation. The state consists of the agent’s joint angles and velocities, object pose, and the

target rotation. Due to the high dimension of the state (68D) and action space (20D), Hand Rotate is

extremely challenging for both RL and IL without dense reward. We therefore ease the task by constraining

the possible initial and target z rotations to [− π
32 ,

π
32] and [π3 ,

π
2]. We collect 10k demonstrations (98k

transitions) using a pre-trained policy (trained for 8M steps).

In Figure 6.3(g), GAIfO-s performs well because its reward function is biased to provide large negative

rewards encouraging the agent to end the episode early which is only possible by succeeding. In contrast,

189

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100
Go

al
 C

om
pl

et
io

n
(%

)
= 0.001
= 0.0001
= 0.01
= 0.1
= 0

(a) Uncertainty penalty λ

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours
Ours (No Offline)
Ours (Linear)
Ours (w/ Action)
Ours (No Uncert)
Ours (Rank)
Ours (No Online)

(b) Proximity function design

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours
GAIfO-s
GAIfO-s+Spectral Norm

(c) Baseline regularization

Figure 6.6: Ablation of our method and comparison to a regularized baseline on Fetch Pick 1.75x to
investigate (a) effects of uncertainty penalty coefficient λ; (b) effects of proximity function design and
online/offline training; and (c) generalization capability of a regularization technique and our proximity
function.

our difference-based reward is designed to provide positive rewards, which does not exploit this task

property, and performs poorly even with an additional constant penalty -0.005 every step. To test the

generalization capability of our proximity function, we additionally examine a variant of our method

(Ours-GAIL), which uses the same reward formulation as GAIfO-s, log fϕ(st)− log(1− fϕ(st)). With this

biased reward function, our method outperforms both GAIfO-s and GAIL, which verifies the benefit of our

proximity function in generalization to noisy environments. While BC achieves the high success rate with

10x more demonstrations compared to other tasks, SQIL shows poor performance due to the lack of the

negative reward bias.

6.4.8 Ablation Study

Dissecting proximity reward We analyze the contribution of the proximity function, reward formu-

lation, and uncertainty penalty to our method’s performance across four tasks in Figure 6.5. Adding

uncertainty to GAIfO-s (GAIfO-s+Uncert) produced a 18.4% boost in average success rate compared to

regular GAIfO-s. Proximity supervision, without the uncertainty penalty, resulted in a 66.7% increase in

average performance over GAIfO-s with the difference-based reward f(st+1)− f(st) (Prox+Diff) and 25.8%

190

with the absolute reward f(st) (Prox+Abs). This higher performance meansmodeling proximity is more

important than the uncertainty penalty for our method.

Although we choose difference-based reward with exponentially discounted goal proximity, the goal

proximity can be either linear or exponential discounting, and both can be used for either a difference-based

or absolute reward, which perform differently across tasks. For example, the difference-based proximity

reward is better for policy learning than the absolute proximity reward except on Ant Reach and Hand

Rotate, where the bias of the absolute reward [145] helps the agent survive longer and reach the goal.

This is a fundamental problem in IRL, where inductive bias in reward functions is crucial and varies by

tasks [145]. Nonetheless, our extensive experiments (Figure 6.5, 6.6(b), 6.8) show that our goal proximity

reward provides a more stable and generalizable learning signal than baselines under the same reward bias.

Moreover, we found that the uncertainty penalty and proximity function have a synergistic

interaction. Combining both the proximity and uncertainty gives a 68.7% increase with the difference-

based reward (Prox+Diff+Uncert) and 26.4% increase with the absolute reward (Prox+Abs+Uncert). The

uncertainty penalty is especially important for the proximity function as it models fine-grain temporal

information where inaccuracies can be easily exploited, as opposed to the binary classification of other

adversarial imitation learning methods.

Ensemble networks Next, we study if the robustness of our method comes from the use of ensemble

networks or task progress. We verify this by applying ensemble of discriminators to the best performing

baseline, GAIfO-s. Figure 6.5 shows that GAIfO-s with ensemble networks (GAIfO-s+Ensemble) only

achieves 19.6% higher success rates, but this is still 39.7% lower than our method on average. Therefore,

the use of task progress is key to learn a generalizable reward, not the use of ensemble networks.

Regularization of discriminators In our experiments above, we show that our goal proximity func-

tion is generalizable to unseen states and goals, which leads to successful imitation learning. We verify

191

whether standard regularization techniques, such as spectral normalization [197], can also provide the

same generalization benefit. In the Fetch Pick 1.75x noise setting (Figure 6.6(c)), GAIfO-s without reg-

ularization struggles to learn, achieving only a 1.43% success rate. Not surprisingly, applying spectral

normalization [197] to the discriminator of GAIfO-s improves the success rate to 14.56%, which suggests

that generalization of the reward function is key to imitation learning with insufficient demonstration

coverage. Despite this improvement, our method performs much better at 75.45% success. In summary,

predicting goal proximity enables significantly better generalization than regularization on the

baselines. Figure 6.10 in appendix show similar results across most other tasks.

Uncertainty penalty coefficient λ In Figure 6.6(a), we investigate how the uncertainty penalty coef-

ficient λ affects the performance, showing that our method performs the best with λ = 0.001. A higher

or lower λ yields worse performance since a higher λ prevents exploring unseen states while a lower λ

encourages exploiting uncertain predictions.

Proximity function training In Figure 6.6(b), we test the importance of online and offline training of

the proximity function. Note that we update the policy with online interactions in both scenarios. The

result shows that online proximity function update is crucial for our method as the agent fails without

online update. Meanwhile, no pre-training, Ours (No Offline), slows down training. Similar results can be

observed across all tasks (see appendix, Figure 6.8).

Our ablation experiments show that (1) goal proximity generalizes better and is more informative for

policy learning; (2) the difference-based proximity reward generally performs better than the absolute one;

and (3) the uncertainty penalty boosts the performance of our method. In conclusion, all three components

of proximity, difference-based reward, and uncertainty are crucial for our method.

192

6.5 Conclusion

We propose a generalizable learning from observation (LfO) method inspired by how humans acquire

generalizable task information and learn skills in new situations by watching others performing goal-

directed tasks. We specifically propose to use task progress, which is intuitive and readily available task

information that can guide an agent closer to the goal. Inspired by this insight, we learn a goal proximity

function and utilize it as a dense reward for policy learning. We hypothesize that predicting the task

progress requires more task-relevant information than estimating an occupancy measure [114], and thus

generalizes to states not seen in the demonstrations. Our extensive experiments on navigation, locomotion,

and robotic manipulation show that our goal proximity function improves generalization in imitation

learning, which results in better performance compared to LfO methods and comparable performance with

LfD methods which learn from expert actions.

In imitation learning, the generalization ability can include generalization to (1) unseen states and goals,

(2) new visual environments (e.g. background), (3) unseen objects, and (4) different embodiments (e.g.

humans to robots or different dynamics). In this paper, we focus on generalization to (1) unseen states

and goals. This is especially important in imitation learning when the number of demonstrations is not

sufficient to cover all possible states and goals. This is very common in imitation learning due to costly

demonstration collection. Our approach suggests an effective way of using the demonstrations with limited

coverage by learning the generalizable goal proximity reward.

Generalization to a different environment and embodiment is another important research direction and

this is indeed our immediate future work. Recent advances in generalizable representation learning [267,

282, 322], robust policy learning [125, 149], and cross-domain correspondence [348] enable us to train

a policy that generalizes to new environments and embodiments. Yet, these approaches are orthogonal

and complementary to our method as our goal proximity function can be trained on top of the learned

representations [267, 282, 322, 125, 149, 348]. We believe that our method can be combined with these

193

approaches and improve their performance with better demonstration efficiency and additional supervision

about task progress.

Societal Impact Our method aims to increase the ability of autonomous agents, such as robots and

self-driving cars, to imitate experts (e.g. humans) from observation alone. This enables autonomous agents

to utilize data even without expert actions, such as kinesthetic demonstrations and video demonstrations.

Ultimately, it could allow autonomous agents to acquire skills even from watching Youtube videos. Since

our method learns from experts, it inherits any biases of the demonstrator, such as sub-optimal or unsafe

behaviors. Additionally, demonstrations are an easy and intuitive way to specify behaviors, its potential

for automation is a threat to job security. However, we overall see enormous benefit with this technology

increasing human quality of life and automating difficult jobs.

6.6 Appendix

6.6.1 Comparison with GAIL and Its Variants

Our method shares a similar adversarial training process with GAIL [114]. First of all, similar to the

discriminator in GAIfO-s [336], our proximity function takes only the current state as input. However,

rather than training the discriminator to classify expert from agent, we train the proximity function to

regress to the proximity labels which are 0 for agent and the time discounted value between 0 and 1 for

expert. Our reward formulation also differs from GAIL approaches which gives a log probability reward

based on the discriminator output. We instead incorporate a proximity estimation uncertainty penalty and

a difference-based proximity reward as shown in Equation 6.3.

194

6.6.2 Failure of GAIfO and SQIL

We found that SQIL training is unstable and often collapses after some amount of training steps (see Ant

experiments in Figure 6.7). Similar trends can be observed in the original paper [246] and other recent

papers [293, 240]. We hypothesize that GAIfO easily overfits to demonstrations compared to other baselines

(e.g. GAIfO-s) since GAIfO conditions its discriminator on both the current and next observations.

We evaluated these methods with the demonstrations from the same initial and goal state distributions

in the first column of Figure 6.7. Even though they are trained for the same goal distributions as the

demonstrations, they still overfit to the demonstration states and thus cannot generalize to unseen states

encountered during online rollouts for most tasks.

6.6.3 Analysis on Generalization of Our Method and Baselines

By learning to predict the goal proximity, the proximity function not only learns to discriminate expert

and agent states but also models task progress, which encourages acquiring task-relevant information.

With this additional supervision on learning goal proximity, we expect the proximity function to provide a

more informative learning signal to the policy and generalize better to unseen states than baselines which

easily overfit the reward function to expert demonstrations. To analyze how well our method and the

baselines can generalize to unseen states, we vary the difference between the states encountered in expert

demonstrations and agent training as described in Section 6.4.

One way we vary the difference between expert demonstrations and agent learning is restricting the

expert demonstrations to only cover parts of the state space. For Navigation andMaze2D, we show results

for expert demonstrations that cover 100%, 75%, 50%, and 25% of the state space. For the discrete state

space in Navigation, we restrict expert demonstrations to the fraction of possible agent start and goal

configurations. For Maze2D, we break the maze into 6× 6 cells and sample a part of the cells for starting

states and another part for goal states.

195

Likewise, we also measure generalization by adding more noise to the initial state during agent learning.

On Fetch Pick, Fetch Push, Ant Reach, and Hand Rotate we show results for four different noise

settings. For the two Fetch tasks, the 2D sampling region of the object and goal is scaled by the noise

factor. For Ant Reach, uniform noise scaled by the noise factor is added to the initial joint angles, whereas

the demonstrations have no noise. For Hand Rotate, uniform noise scaled by the noise factor is added

to the possible initial and target object pose. If our method allows for greater generalization from the

expert demonstrations, our method should perform well even under states different than those in the expert

demonstrations.

The results of our method and baselines across varying degrees of generalization are shown in Figure

6.7. Note that the results in the main paper are for 1.75x noise in Fetch Pick and Fetch Push, 0.05 noise

in Ant Reach, 0.35 noise in Hand Reach, and 25% coverage in Maze2D. Across both harder and easier

generalization, our method demonstrates more consistent performance compared to baseline methods.

While GAIfO-s performs well on high coverage or low noise, which require little generalization in agent

learning, its performance deteriorates as the expert demonstration coverage decreases.

196

LfO LfD LfO+reward

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(b) Navigation 100%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(c) Navigation 75%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(d) Navigation 50%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(e) Navigation 25%

0 1M 2M 3M 4M 5M
Step

0

10

20

30

40

50

60

70

Go
al

 C
om

pl
et

io
n

(%
)

(f) Maze2D 100%

0 1M 2M 3M 4M 5M
Step

0

10

20

30

40

50

60

70

Go
al

 C
om

pl
et

io
n

(%
)

(g) Maze2D 75%

0 1M 2M 3M 4M 5M
Step

0

10

20

30

40

50

60

70

Go
al

 C
om

pl
et

io
n

(%
)

(h) Maze2D 50%

0 1M 2M 3M 4M 5M
Step

0

10

20

30

40

50

60

70

Go
al

 C
om

pl
et

io
n

(%
)

(i) Maze2D 25%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(j) Ant Reach 0.00

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(k) Ant Reach 0.01

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(l) Ant Reach 0.03

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(m) Ant Reach 0.05

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(n) Fetch Pick 1x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(o) Fetch Pick 1.25x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(p) Fetch Pick 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(q) Fetch Pick 2x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(r) Fetch Push 1x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(s) Fetch Push 1.25x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(t) Fetch Push 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(u) Fetch Push 2x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours (GAIL)

(v) Hand Rotate 0.0

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours (GAIL)

(w) Hand Rotate 0.25

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours (GAIL)

(x) Hand Rotate 0.35

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours (GAIL)

(y) Hand Rotate 0.5

Figure 6.7: Analyzing generalization to unseen states from expert demonstrations. Navigation and Maze2D tasks
are tested with different coverages of state spaces in demonstrations, while Fetch, Ant Reach, and Hand Rotate
tasks are tested in more noisy environments. The number indicates the amount of additional noise in agent learning
compared to that in the expert demonstrations, with more noise requiring harder generalization. The noise level
increases from left to right. 197

6.6.4 Further Ablations

We include additional ablations to further highlight the advantages of our main proposed method over its

variants. We evaluate against the same ablations proposed in the main paper (Figure 6.6(b)), but across all

environments. We present all these results in Figure 6.8.

Our method shows the best performance in the majority of environments. In all tasks, incorporating

online updates is crucial since the proximity function can overfit to expert trajectories and poorly generalize

to agent trajectories. Updating the proximity function with online agent experience lowers the proximity

prediction outside of the expert trajectories and thus leads an agent to follow the expert. Our method with

the uncertainty penalty shows superior performance in Fetch Pick and Hand Rotate, while it performs

similarly with our method without the uncertainty penalty in other environments. Our method using the

linear proximity function achieves similar to or slightly lower performance than the exponential proximity

function used in the main paper. Offline pre-training of the proximity function is also helpful in most

environments.

We also compare to an ablation which learns the proximity function through a ranking-based loss

similar to Brown et al. [34] and Burke et al. [36]. However, we empirically found it to be ineffective and

difficult to train. This ranking-based loss uses the criterion that for two states from an expert trajectory

st1 , st2 , the proximities should obey f(st1) < f(st2) if t1 < t2. We therefore train the proximity function

with the cross entropy loss −∑
ti<tj

log
exp fϕ(stj)

exp fϕ(sti)+exp fϕ(stj)
. We incorporate agent experience by adding

an additional loss which ranks expert states above agent states for randomly sampled pairs of expert and

agent states (se, sa) through the cross-entropy loss:

−
∑

sa∼De,se∼πθ

log
exp fϕ(se)

exp fϕ(sa) + exp fϕ(se)
. (6.6)

198

Unlike the discounting factor in the discounting-based proximity function, the ranking-based training

requires no hyperparameters. However, as shown in Figure 6.8, the lack of supervision on ground truth

proximity scores results in less meaningful predicted proximity and a worse learning signal for the agent,

which could explain its poor performance.

We also show results for applying spectral normalization [197] to GAIfO-s [302] in Figure 6.10 across

all tasks. While regularizing the GAIfO-s discriminator can consistently improve its performance, it still

cannot generalize as well as our method for the majority of tasks. As mentioned in Section 6.4.7, GAIfO-s

has a bias to provide negative rewards encouraging the agent to end the episode early, which is a desirable

property for the Hand Rotate task. Vanilla GAIfO-s therefore performs better than our method in this

environment, and spectral normalization for the discriminator further improves GAIfO-s performance.

Ours Ours (Linear) Ours (Rank) Ours (w/ Action) Ours (No Offline) Ours (No Uncert) Ours (No Online)

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(b) Navigation 50%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(c) Ant Reach 0.03

0 1M 2M 3M 4M 5M
Step

0

10

20

30

40

50

60

70
Go

al
 C

om
pl

et
io

n
(%

)

(d) Maze2D 50%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(e) Fetch Pick 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(f) Fetch Push 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

Ours (GAIL)

(g) Hand Rotate 0.35

Figure 6.8: Ablation on proximity function design and online/offline proximity function training. We
compare our method to the proximity function with actions as input or with a ranking-based objective
(Equation 6.6). Our method shows consistently superior or comparable performance over all ablations.

199

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

= 0.95
= 0.99
= 0.9
= 0.7
= 0.5

(a) Fetch Pick 1.75x δ ablation

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

= 0.95
= 0.99
= 0.9
= 0.7
= 0.5

(b) Fetch Push 1.75x δ ablation

Figure 6.9: Analyzing different choices of the proximity discounting factor δ for training the proximity
function. The model learns similarly well over a range of δ values around 0.95, but struggles for too large
or too small δ.

6.6.5 Qualitative Results

It is important for agent learning that the proximity function gives higher values for states that are

temporally closer to the goal. To verify this intuition, we visualize the proximity values predicted by the

proximity function in a successful episode from agent learning in Figure 6.11. In Figure 6.11, we can observe

that the predicted proximity increases as the agent moves closer to the goal (except Hand Rotate). This

provides an example of the proximity function generalizing to agent experience and providing a meaningful

reward signal for agent learning.

We notice that while the predictions increase as the agent nears the goal, the proximity prediction

values are often low (<0.1) as shown in Figure 6.11(c). These low values are mostly predicted for the states

not covered in the demonstrations due to the adversarial online training of the proximity function. During

online proximity function training, we label agent experience with 0 proximity and therefore proximity

predictions get lower, especially for states not in the demonstrations.

For Hand Rotate, the proximity function fails to predict increasing proximity for states near the goal

as an agent cannot learn to imitate the exact expert trajectories. Instead, due to the negatively biased

reward, the agent finds a new way to solve the task as discussed in Section 6.4.7 and therefore achieves low

proximity predictions even for successful trajectories as shown in Figure 6.11(e). However, our method still

200

Ours GAIfO-s GAIfO-s+Spectral Norm

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(b) Navigation 50%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(c) Ant 0.03

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(d) Maze 50%

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(e) Fetch Pick 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100
Go

al
 C

om
pl

et
io

n
(%

)

(f) Fetch Push 1.75x

0 1M 2M 3M 4M 5M
Step

0

20

40

60

80

100

Go
al

 C
om

pl
et

io
n

(%
)

(g) Hand Rotate 0.35

Figure 6.10: Effect of applying spectral normalization to the GAIfO-s baseline compared to the performance
of our method. While regularization helps GAIfO-s, it still is outperformed by our method in the majority
of tasks.

provides relatively higher proximity values near goal states compared to baseline methods, which leads our

agent to achieve higher performance in noisy environments.

6.6.6 Implementation Details

We use PyTorch [223] for our implementation and all experiments are conducted on a workstation with an

Intel Xeon E5-2640 v4 CPU and a NVIDIA Titan Xp GPU. Most adversarial imitation learning methods and

our method are trained for around 3 hours with 32 parallel workers. GoalGAIL and SQIL training takes

around 48 hours since they use off-policy optimization with a single worker.

201

6.6.6.1 Environment Details

In this section, we summarize details of the six goal-directed tasks discussed in this paper. For all en-

vironments, the starting and goal states are randomly initialized. All units in this section are in meters

and radians unless otherwise specified. The summary of observation spaces, action spaces, and episode

lengths are described in Table 6.1. To evaluate the generalization capability of our method and baselines,

we constrain the coverage of expert demonstrations or add additional starting state noise during agent

learning as discussed in Section 6.6.3.

Navigation [50] In Navigation, the state consists of a one-hot vector for each grid cell encoding

wall, empty space, agent, or goal. Navigation has four discrete actions for moving in four directions. We

collect 250 expert demonstrations using the shortest path algorithm, BFS search. The 25% holdout region is

visualized in Figure 6.12.

Maze2D [87] InMaze2D, the state consists of the agent’s 2D position, velocity, and the goal position.

The point mass agent moves around the maze by controlling the continuous value of its (x, y) velocity.

The only modification in this environment from maze2d-medium-v1 [87] is the episode length reduced

from 600 to 400. We collect 100 expert demonstrations using a planner provided by Fu et al. [87].

Ant Reach [91] In Ant Reach the state consists of joint angle, velocity, force and the relative goal

position, and the agent is controlled using joint torque control. We collect 1,000 demonstrations using an

expert policy trained using PPO [265] based on the reward function R(s, a) = 1− 0.2 · ||pant − pgoal||2 −

0.005 · ||a||22, where pant and pgoal are (x, y)-positions of the ant and goal, respectively, and a is an action.

Please refer to the code for more details.

Fetch Pick and Fetch Push [235] The actions in the Fetch experiments use 3-D end-effector position

control and 1-D continuous control for the gripper (fixed for Fetch Push). A 16-dimensional state in Fetch

202

tasks consists of the relative position of the goal from the object, relative position of the end-effector to the

object, and robot joint state. We found that not including the velocity information was beneficial for all

learning from observation approaches in Fetch tasks. In Fetch Pick, we generate 1,000 demonstrations by

hard coding the Sawyer Robot to first reach above the object, then reach down and grasp, and finally move

to the target position. Similarly, in Fetch Push, we collect 664 demonstrations by hard coding the Sawyer

to reach behind the object and then execute a planar push towards to the goal.

Hand Rotate [235] The original task HandManipulateBlockRotateZ-v0 proposed in Plappert et al.

[235] is challenging to solve without reward due to its large and combinatorial state space and large action

space. Hence, we reduce the initial and goal z rotations of the block to [− π
32 ,

π
32] and [

π
3 ,

π
2]. The 68-D state

space consists of the agent’s joint angles and velocities, and object pose. The 20-D action space is for joint

torque control of 24-DoF Shadow Dexterous Hand. We collect 10,000 demonstrations using an expert policy

trained with DDPG+HER [14] using a sparse reward.

6.6.6.2 Network Architectures

Actor and critic networks: We use the same architecture for actor and critic networks except for the

output layer where the actor network outputs an action distribution while the critic network outputs

a critic value. For Navigation, the actor and critic network consists of CONV (3, 2, 16) − ReLU −

MaxPool(2, 2)− CONV (3, 2, 32)−ReLU − CONV (3, 2, 64) followed by two fully-connected layers

with hidden layer size 64, where CONV (k, s, c) represents a c-channel convolutional layer with kernel

size k and stride s. For other tasks, we model the actor and critic networks as two separate 3-layer MLPs

with hidden layer size 256. For the continuous control tasks, the last layer of the actor MLP has two heads

to output the mean and standard deviation of a Gaussian distribution which an action is sampled from. We

use the ReLU activation for Navigation and tanh for other tasks.

203

Goal proximity function and discriminator: The goal proximity function and discriminator use a

CNN encoder (the same CNN architecture as the actor and critic networks) followed by a hidden layer of

size 64 for Navigation and a 3-layer MLP with a hidden layer of size 64 for other tasks. When measuring

the uncertainty of predictions, we use an ensemble of 5 networks.

6.6.6.3 Training Details

For our method and all baselines except BC [236] and BCO [301], we train policies using PPO [265]. The

hyperparameters for policy training are shown in Table 6.2, while the hyperparameters for the proximity

and discriminator function are shown in Table 6.3. For our method, we found it helpful to normalize the

reward based on the moving average and standard deviation of returns. We also did so for baselines when

it helped.

For hyperparameter tuning, we searched over entropy coefficients {0.0001, 0.001, 0.01}, state normal-

ization {True, False}, uncertainty coefficient {0.0001, 0.001, 0.01, 0.1}, learning rates {0.0001, 0.0003, 0.001},

and reward normalization {True, False}.

In BC, the demonstrations were split into 80% training data and 20% validation data. The policy was

trained on the training data until the validation loss stopped decreasing. The policy is then evaluated for

1,000 episodes to get an average success rate.

In GAIfO-s and GAIL, we use the reward form of logD(s)− log(1−D(s)) and logD(s, a)− log(1−

D(s, a)), respectively, from Finn et al. [78] and Fu, Luo, and Levine [88].

For GoalGAIL [67], we use the default hyperparameters used in the original implementation. For the

policy network, we use a deterministic policy for DDPG [170] and use the tanh activation to normalize

the policy output between [−1, 1]. We update the policy and critic every 2 environment steps and the

discriminator every 10 environment steps to prevent overfitting.

204

Algorithm 2 Imitation learning with learned goal proximity
Require: Expert demonstrations De = {τ e1 , . . . , τ eN}
1: Initialize goal proximity function fϕ and policy πθ
2: for i = 0, 1, ...,M do

3: Sample expert demonstration τ e ∼ De

4: Update fϕ with τ e to minimize Equation 6.1 ▷ Offline proximity function training
5: end for

6: for i = 0, 1, ..., L do

7: Rollout trajectories τi = (s0, . . . , sTi) with πθ
8: Compute proximity reward Rϕ(st, st+1) for (st, st+1) ∼ τi using Equation 6.5
9: Update πθ using any RL algorithm ▷ Policy training
10: Update fϕ with τi and τ e ∼ De to minimize Equation 6.2 ▷ Online proximity function training
11: end for

Table 6.1: Environment details. In Navigation andMaze2D, the goal and agent are randomly initialized
anywhere on the grid. In Ant Reach, the angle of the goal and the velocity of the agent are randomly
initialized. The goal and object noise in Fetch describes the amount of uniform noise applied to the (x, y)
coordinates of the object and goal. In Hand Rotate, the state and goal noises are applied to the initial and
goal object rotations.

State Action Goal noise State noise Episode len. # demos

Navigation (19, 19, 4) 4 - - 50 250

Maze2D 6 2 - - 600 100

Ant Reach 132 8 θ ∈ [0, π] v ∈ [±.005] 50 1,000

Fetch Pick 16 4 (x, y) ∈ [±.02,±.05] 50 1,000

Fetch Push 16 3 (x, y) ∈ [±.02,±.05] 60 664

Hand Rotate 68 20 θ ∈ [π2 ,
π
3] θ ∈ [± π

32] 50 10,000

Table 6.2: PPO hyperparameters used for baselines and our method.

Hyperparameter Value

Learning Rate 3e-4

Learning Rate Decay Linear decay

Mini-batches 4 (Navigation), 32 (others)

Epochs per Update 4 (Navigation), 10 (others)

Discount Factor γ 0.99

Rollout Size 16,000 (Ant Reach), 4,096 (others)

Entropy Coefficient 0.01 (Navigation), 0.001 (others)

State Normalization False (Navigation), True (others)

205

Proximity: 0.162 Proximity: 0.195 Proximity: 0.374 Proximity: 0.805

(a) Ant Reach

Proximity: 0.000 Proximity: 0.038 Proximity: 0.157 Proximity: 0.517

0.094 0.308

(b) Maze2D

Proximity: 0.015 Proximity: 0.028 Proximity: 0.050 Proximity: 0.072

(c) Fetch Pick

Proximity: 0.000 Proximity: 0.151 Proximity: 0.322 Proximity: 0.347

(d) Fetch Push

Proximity: 0.464 Proximity: 0.013 Proximity: 0.004 Proximity: 0.006

(e) Hand Rotate

Figure 6.11: Visualizing the proximity predictions for a successful trajectory from agent learning. Four
informative frames are selected from the overall trajectory and the predicted proximity value is displayed
below. The proximity prediction visualization for Navigation can be found in Figure 6.4(e).

206

Figure 6.12: The goals of the expert demonstrations in red for the Navigation 25% holdout setting.

Table 6.3: Hyperparameters for goal proximity functions (ours) and discriminators (baselines).

Hyperparameter Value

Networks for Ensemble 5

Epochs for Pre-training 5

Discount Factor δ 0.95 (exponential), 1/H (linear)

Uncertainty Coefficient λ 0.001 (Fetch), 0.01 (others)

Learning Rate (ours) 1e-3 (Navigation, Fetch, Maze2D), 1e-4 (Ant Reach, Hand Rotate)

Learning Rate (baselines) 1e-4

Batch Size 32 (Navigation), 128 (others)

Updates per Agent Update 1

Experience Buffer Size 16,000 (Ant Reach), 4,096 (others)

Reward Norm. (ours) True

Reward Norm. (baselines) True (Fetch), False (others)

207

Part IV

Task Execution

208

Chapter 7

Learning to Execute Programs

7.1 Introduction

Humans are capable of leveraging instructions to accomplish complex tasks. A comprehensive instruction

usually comprises a set of descriptions detailing a variety of situations and the corresponding subtasks that

are required to be fulfilled. To accomplish a task, we can leverage instructions to estimate the progress,

recognize the current state, and perform corresponding actions. For example, to make a gourmet dish, we

can follow recipes and procedurally create the desired dish by recognizing what ingredients and tools are

missing, what alternatives are available, and what corresponding preparations are required. With sufficient

practice, we can improve our ability to perceive (e.g. knowing when food is well-cooked) as well as master

cooking skills (e.g. cutting food into same-sized pieces), and eventually accomplish difficult recipes.

Can machines likewise learn to follow and exploit comprehensive instructions like humans? Utilizing

expert demonstrations to instruct agents has been widely studied in [82, 345, 332, 225, 283, 69, 323]. However,

demonstrations could be expensive to obtain and are less flexible (e.g. altering subtask orders in demonstra-

tions is nontrivial). On the other hand, natural language instructions are flexible and expressive [182, 128,

138, 194, 86, 135, 21]. Yet, language has the caveat of being ambiguous even to humans, due to its lacking of

structure as well as unclear coreferences and entities. [11, 216] investigate a hierarchical approach, where

the instructions consist of a set of symbolically represented subtasks. Nonetheless, those instructions are

209

not a function of states (i.e. describe a variety of circumstances and the corresponding desired subtasks),

which substantially limits their expressiveness.

We propose to utilize programs, written in a formal language, as a structured, expressive, and unam-

biguous representation to specify tasks. Specifically, we consider programs, which are composed of control

flows (e.g. if/else and loops), environmental conditions, as well as corresponding subtasks, as shown in

Figure 7.1. Not only do programs have expressiveness by describing diverse situations (e.g. a river exists)

and the corresponding subtasks which are required to be executed (e.g. mining wood), but they are also un-

ambiguous due to their explicit scoping. To study the effectiveness of using programs as task specifications,

we introduce a new problem, where we aim to develop a framework which learns to comprehend a task

specified by a program as well as perceive and interact with the environment to accomplish the task.

To address this problem, we propose a modular framework, program guided agent, which exploits the

structural nature of programs to decompose and execute them as well as learn to ground program tokens

with the environment. Specifically, our framework consists of three modules: (1) a program interpreter

that leverages a grammar provided by the programming language to parse and execute a program, (2) a

perception module that learns to respond to conditional queries (e.g. is_there[River]) produced by the

interpreter, and (3) a policy that learns to fulfill a variety of subtasks (e.g. mine(Wood)) extracted from

the program by the interpreter. To effectively instruct the policy with symbolically represented subtasks,

we introduce a learned modulation mechanism that leverages a subtask to modulate the encoded state

features instead of concatenating them. Our framework (shown in Figure 7.3) utilizes a rule-based program

interpreter to deal with programs as well as learning perception module and policy when it is necessary to

perceive or interact with the environment. With this modularity, our framework can generalize to more

complex program-specified tasks without additional learning.

To evaluate the proposed framework, we consider a Minecraft-inspired 2D gridworld environment,

where an agent can navigate itself across different terrains and interact with objects, similar to [11, 281]. A

210

Program

def run():
if is_there[River]:
mine(Wood)
build_bridge()
if agent[Iron]<3:
mine(Iron)

place(Iron, 1, 1)
else:
goto(4, 2)

while env[Gold]>0:
mine(Gold)

Figure 7.1: An illustration of the proposed problem.
We are interested in learning to fulfill tasks specified
by written programs. A program consists of control
flows (e.g. if, while), branching conditions (e.g. is_-
there[River]), and subtasks (e.g. mine(Wood)).

Program p := def run() : s
Statement s := while(c) : (s) | b | loop(i) : (s)

| if(c) : (s) | elseif(c) : (s) | else : (s)
Item t := Gold | Wood | Iron

Terrain u := Bridge | River | Merchant | Wall | Flat
Operators o := > ≥ == < ≤
Numbers i := A positive integer or zero

Perception h := agent[t] | env[t] | is_there[t] | is_there[u]
Behavior b := mine(t) | goto(i, i)

| place(t, i, i) | build_bridge() | sell(t)
Conditions c := h[t] o i | h[u] o i

Figure 7.2: The domain-specific language (DSL) for con-
structing programs. Each program is composed of domain
dependent perception, subtasks, and control flows.

corresponding domain-specific language (DSL) defines the rules of constructing programs for instructing

an agent to accomplish certain tasks. Our proposed framework demonstrates superior generalization ability

– learning from simpler tasks while generalizing to complex tasks. We also conduct extensive analysis

on various end-to-end learning models which learns from not only program instructions but also natural

language descriptions. Furthermore, our proposed learned policy modulation mechanism yields a better

learning efficiency compared to other commonly used methods that simply concatenate a state and goal.

7.2 Related Work

Learning from language instructions. Prior works have investigated leveraging natural languages to

specify tasks on a wide range of applications, including navigation [194, 296, 86, 313, 272, 32, 33, 195, 296],

spatial reasoning for goal reaching [127], game playing [135, 85, 249], and grounding visual concepts [135,

21, 10]. However, natural language descriptions can often be ambiguous even to humans. Moreover, it is

not clear how end-to-end learning agents trained with simpler instructions can generalize well to much

more complex ones. In contrast, we propose to utilize a precise and structured representation, programs, to

specify tasks.

211

Learning from demonstrations. When a task cannot be easily described in languages (e.g. object

texture or geometry), expert demonstrations offer an alternative way to provide instructions. Prior works

have explored learning from video demonstrations [82, 345, 332, 225, 283, 19] or expert trajectories [69, 323].

However, demonstrations can be expensive to obtain and are less expressive about diverging behaviors of a

complex task, which are better captured by control flow in programs. Moreover, editing demonstrations

such as rearranging the order of subtasks is often difficult.

Program induction and synthesis. To learn acquire programmatic skills such as digit addition and

string transformations and achieve better generalization, program induction methods [332, 61, 208, 95,

132, 247, 38, 329] aim to implicitly induce the underlying programs to mimic the behaviors demonstrated

in task specifications (e.g. input/output pairs, demonstrations). On the other hand, program synthesis

methods [31, 219, 63, 46, 273, 35, 175, 287, 171, 169] explicitly synthesize the underlying programs and

execute the programs to perform the tasks. Instead of trying to infer programs from task specifications,

we are interested in explicitly executing programs. Also, our framework can potentially be leveraged to

obtain program execution results for evaluating program synthesis frameworks when no program executor

is available (e.g. programs describe real-world activities instead of behaviors in simulation).

Symbolic planing and programmable agent. Classical symbolic planning concerns the problem of

achieving a goal state from an initial state through a series of symbolically represented executions [90, 144].

Our work shares a similar spirit but assume a task (i.e. a program) is given, where the agent is required

to learn to ground symbolic concepts [185, 107] and follow the control flow. Executing programs with

reinforcement learning has been studied in programmable hierarchies of abstract machines [221, 8, 9],

which provide partial descriptions and subroutines of the desired task. [59, 155] train agents to execute

declarative programs by grounding these well-structured languages in their learning environments. In

contrast, our modular framework consists of modules for perceiving the environment and interacting with

212

it by following an imperative program which specifies the task. An extended discussion on the related

work can be found in Section 7.7.3.

7.3 Problem Formulation

We are interested in learning to comprehend and execute an instruction specified by a program to fulfill

the desired task. In this section, we formally describe our definition of programs, the family of Markov

Decision Processes (MDPs), and the problem formulation.

Program. The programs considered in this work are defined based on a Domain-Specific Language

(DSL) as shown in Figure 7.2. The DSL is composed of perception primitives, action primitives, and

control flow. A perception primitive indicates circumstances in the environment (e.g. is_there(River),

and agent[Gold]<3) that can be perceived by an agent, while an action primitive defines a subtask

that describes a certain behavior (e.g. mine(Gold), and goto(1,1)). Control flow includes if/else

statements, loops, and Boolean/logical operators to compose more sophisticated conditions. A program p is

a deterministic function that outputs a desired behavior (i.e. subtask) given a history of states ot = p (Hj),

where Hj = {s1, ..., st} is a state history with s ∈ S denoting a state of the environment, and o ∈ O

denotes an instructed behavior (subtask). We denote a program as p ∼ P , an infinite program set containing

all executable programs given a DSL. Note that a discussion on the DSL design principle can be found in

Section 7.7.2.

MDPs. We consider a family of finite-horizon discounted MDPs in a shared environment, specified by a

tuple (S,A,P, T ,R, ρ, γ), where S denotes a set of states, A denotes a set of low-level actions an agent

can take, P denotes a set of programs specifying instructions, T : S × A× S → R denotes a transition

probability distribution,R denotes a task-specific reward function, ρ denotes an initial state distribution,

and γ denotes a discount factor. For a fixed sequence {(s0, a0), ..., (st, at)} of states and actions obtained

213

Module Module Output

Environment
ActionPolicy

GoalProgram Interpreter

ResponseQuery

Perception
Module

Program

def run():

 while env[Gold] > 0:

 mine(Gold)

 if is_there[River]:

 build_bridge()

 place(Wood, 2, 3)

State

3 0 1

Figure 7.3: Program Guided Agent. The proposed modular framework comprehends and fulfills a desired
task specified by a program. The program interpreter executes the program by altering between querying
the perception module with a query q when an environment condition is encountered (e.g. env[Gold]>0,
is_there[River]) and instructing a policy when it needs to fulfill a goal/subtask g (e.g. mine(Gold),
build_bridge()). The perception module produces a response h to answer the query, determining which
paths in the program should be chosen. The policy takes a sequence of low-level actions a (e.g. moveUp,
moveLeft, Pickup) interacting with the environment to accomplish the given subtask (e.g. mine(Gold)).

from a rollout of a given policy π, the performance of the policy is evaluated based on a discounted return

∑T
t=0 γ

trt, where T is the horizon of the episode.

Problem Formulation. We consider developing a framework which can comprehend and fulfill an

instruction specified by a program. Specifically, we consider a sampled MDP with a program describing

the desired task. Addressing this task requires the ability to keep track of which parts of the program are

finished and which parts are not, perceiving the environment and deciding which paths in the program to

take, and performing actions interacting with the environment to fulfill subtasks.

7.4 Approach

Accomplishing an instructed task described by a program requires (1) executing the program control flow

and conditions, (2) recognizing the situations to infer which path in the program should be chosen, and (3)

executing a series of actions interacting with the environment to fulfill the subtasks. Based on this intuition,

we design a modular framework with three modules:

214

• Program interpreter (Section 7.4.1) reads a program and executes it by querying a perception

module with environment conditions (e.g. env[Gold]>0) and instructing the policy with subtasks

(e.g. mine(Gold)).

• Perception module (Section 7.4.2) responds to perception queries (e.g. env[Gold]>0) by examining

the observation and predicting responses (e.g. true).

• Policy (action module) (Section 7.4.3) performs low-level actions (e.g. moveUp, moveLeft, pickUp)

to fulfill the symbolically represented subtasks (e.g. mine(Gold)) provided by the program interpreter.

Our key insight is to only learn a module when its input or output is associated with the environment (i.e.

a function approximator is needed) – the perception module learns to ground the queries to its observation

and answer them; the policy learns to ground the symbolically represented subtasks and interact with

the environment in a trial-and-error way (Section 7.4.4). On the other hand, we do not learn the program

interpreter; instead, we utilize a rule-based parser to execute programs An overview of the proposed

framework is illustrated in Figure 7.3.

7.4.1 Program Interpreter

To execute a program instruction, we group program tokens into threemain categories: (1) subtasks indicate

what the agent should perform (e.g. mine(Gold)), (2) perceptions the essential information extracted from

the environment (e.g. env[Gold]>0), and (3) control flows determine which paths in a program should

be taken according to the perceived information (i.e. perceptions). Then, we devise a program interpreter,

which can execute and keep track of the progress by leveraging the structure of programs. Specifically, it

consists of a program line parser and a program executor. The parser first transforms the program into

a program tree by representing each line of a program as a tree node. Each node is either a leaf node

(subtask) or a non-leaf node (perception or control flow) that has various subroutines as children nodes.

The executor then performs a pre-order traversal on the program tree to execute the program, utilizing the

215

parsed contents to alternate between querying the perception module when an environment condition

is encountered and instructing the policy when it reaches to a leaf node (subtask). The details and the

algorithm are summarized in Section 7.7.1. Note that the program interpreter is a rule-based algorithm

instead of a learning module.

7.4.2 Perception Module

Determining which paths should be chosen when executing a program requires grounding a symbolically

represented query (e.g. is_there[River] can be represented as a sequence of symbols) and perceiving

the environment. To this end, we employ a perception module Φ that learns to map a query and current

observation to a response: h = Φ(q, s), where q denotes a query, and h denotes the corresponding

perception output (e.g. true/false). Note that we focus on Boolean perception outputs in this paper, but

a more generic perception type can be used (e.g. object attributes such as color, shape, and size).

7.4.3 Policy

When program execution reaches a subtask/leaf node (e.g. mine(Gold)), the agent is required to take

a sequence of low-level actions (e.g. moveUp, moveLeft, Pickup) to interact with the environment to

fulfill it. To enable the execution, we employ a multitask policy π (i.e. action module) which is instructed

by a symbolic goal (e.g. mine(Gold)) provided by the program interpreter indicating the details of the

corresponding subtask. To learn to perform different subtasks, we train the policy using actor-critic

reinforcement learning, which takes a goal vector g and an environment state s and outputs a probabilistic

distribution a for low-level actions a ∼ π(st, gt|θ). The value estimator used for our policy optimization is

also goal-conditioned: Vπ(st, gt) = E[
∑

t γ
tRt|s0 = s, π, gt].

While the most common way to feed a state and goal to a policy parameterized by a neural network

is to concatenate them in a raw space or a latent space, we find this less effective when the policy has to

216

conv / fc

conv / fc goal network

Modulation

concat

encode encode

Concatenation (Latent)

concat

Concatenation (Raw)

(a) Illustration (b) Training curves

Figure 7.4: Learning a multitask policy via learned modulation. (a) A multitask policy takes both
a state s and a goal specification g as inputs and produces an action distribution a ∼ π(s, g). Instead of
simply concatenating the state and goal in a raw space or a latent space, we propose to modulate state
features es using the goal. Specifically, the goal network learns to predict affine transform parameters γ
and β to modulate the state features ês = γ · es + β. Then, the final layers use the modulated features
to predict actions. (b) We experiment different ways of feeding a state and goal for learning a multitask
policy. The training curves demonstrate that all modulation variants, including modulating state feature
maps of convolutional layers (Modulation conv), modulating state feature vectors of fully-connected layers
(Modulation fc), or both (Modulation conv fc), are more efficient than concatenating the state and the goal in
a raw space (Concat raw) or a latent space (Concat).

learn a diverse set of tasks. Therefore, we propose a modulation mechanism to effectively learn the policy.

Specifically, we employ a goal network to encode the goal and compute affine transform parameters γ and

β, which are used to modulate state features es to ês = γ · es + β. Then, the modulated features ês are

used to predict action a and value V . With the modulation mechanism, the goal network learns to activate

state features related to the current goal and deactivate others. An illustration is shown in Figure 7.4 (a). A

more detailed discussion of the related works that utilize similar learned modulation mechanisms can be

found in Section 7.7.4.

7.4.4 Learning

To follow a program by perceiving the environment and taking actions to interact with it, we employ two

learning modules: a perception module and a policy. In this section, we discuss how each module is trained,

217

their training objectives, and optimization methods. More training details and the architectures can be

found in Section 7.7.5.4.

7.4.4.1 Perception Module

We formulate training the perception module as a supervised learning task. Given tuples of (query q,

state s, ground truth perception hgt), we train a neural network Φ to predict the perception output h by

optimizing the binary cross-entropy loss: LCE = −hgtlog(h) − (1 − hgt)log(1 − h). A query such as

is_there[River] is represented as a sequence of symbols. Note that when perception describes more

than a Boolean, training the perception module can be done by optimizing other losses such as categorical

cross-entropy loss. We train the perception module only on the queries appearing in the training programs

with randomly sampled states, requiring it to generalize to novel queries to perform well in executing

testing programs.

7.4.4.2 Policy

We train the policy using Advantage Actor-Critic (A2C) [198, 64], which is commonly used for gridworld

environments with discrete action spaces. A2C computes policy gradients At∇θ log πθ (at|st, gt), where

At = Rt − V (st, gt) is the advantage function based on empirical return Rt starting from st and learned

value estimator V (st, gt) conditioning on the goal vector gt. We denote the learning rate as α, and the

policy update rule is as follows:

θ ← θ + α (At∇θ log πθ (at|st, gt) + β∇θHπθ
) , (7.1)

whereHπθ
denotes the policy entropy, where maximizing it improves overall exploration, and β determines

the strength of the entropy regularization term.

218

7.5 Experiments

Our experiments aim to answer the following questions: (1) Can our proposed framework learn to perform

tasks specified by programs? (2) Can our modular framework generalize better to more complex tasks

compared to end-to-end learning models? (3) How well can a variety of end-to-end learning models (e.g.

LSTM, Tree-RNN, Transformer) learn from programs and natural language instructions? (4) Is the proposed

learned modulation more efficient to learn a multitask (multi-goal) policy than simply concatenating a state

and goal?

7.5.1 Experimental Setups

7.5.1.1 Environment

To evaluate the proposed framework in an environment where an agent can perceive diverse scenarios

and interact with the environment to perform various subtasks, we construct a discrete Minecraft-inspired

gridworld environment, similar to [11, 281]. As illustrated in Figure 7.1, the agent can navigate through a

grid world and interact with resources (e.g. Wood, Iron, Gold) and obstacles (e.g. River, Wall), build tools

(e.g. Bridge), and sell resources to a merchant visualized as an alpaca. The environment gives a sparse task

completion reward of +1 when an instruction (i.e. an entire program or natural language instruction) is

successfully executed. More details can be found in Section 7.7.5.1.

7.5.1.2 Task Instructions

Programs. We sample 4,500 programs using our DSL and split them into 4,000 training programs (train) and

500 testing programs (test). To examine the framework’s ability to generalize to more complex instructions,

we generate 500 programs which are twice longer and contains more condition branches on average to

construct a harder testing set (test-complex).

219

Natural language instructions. To obtain the natural language counterparts of those instructions,

we asked annotators to construct natural language translations of all the programs. The data collection

details, as well as sample programs and their corresponding natural language translations, can be found

in Section 7.7.5.3, and Figure 7.10 respectively. We include a brief discussion on how annotated natural

language instructions can be ambiguously interpreted as several valid programs.

7.5.2 Training

During training, we randomly sample programs from the training set as well as randomly sample an

environment state to execute the program interpreter. The program interpreter produces a goal to instruct

the policy when encountering a subtask in the program. The policy takes actions a ∼ π(s, g) and receive

reward +1 only when the entire program is completed. While we do not explicitly introduce a curriculum

like [11], this setup naturally induces a curriculum where the policy first learns to solve simpler programs

and gain a better understanding of subtasks by obtaining the task completion, which eventually allows the

policy to complete more complex programs. Note that the perception module is pre-trained beforehand in

a supervised manner. More training details can be found in Section 7.7.5.7.

7.5.3 End-to-end Learning Models

In contrast to the proposed modular framework, we experiment with a variety of end-to-end learning

models. Considering programs and natural language instructions as sequences of tokens, we investigate

two types of state-of-the-art sequence encoders: LSTM [115] (Seq-LSTM), and Transformers [306, 62]

(Transformer). To leverage the explicit structure of programs, we also investigate encoding programs using

a generalization of RNNs for tree-structured input [294, 7] (Tree-RNN). All the models are trained using

A2C. The details of these architectures can be found in Section 7.7.5.4.

220

Table 7.1: Task completion rate. For each method, we iterate over all the programs in a testing set by
randomly sampling ten initial environment states and running three models trained using different random
seeds for this method. The averaged task completion rates and their standard deviations are reported. Note
that all the end-to-end learning models learning from natural language descriptions and programs suffer
from a significant performance drop when evaluated on the more complex testing set.

Instruction Natural language descriptions Programs

Method Seq-LSTM Transformer Seq-LSTM Tree-RNN Transformer Ours (concat) Ours

Dataset

test 54.9±1.8% 52.5±2.6% 56.7±1.9% 50.1±1.2% 49.4±1.6% 88.6±0.8% 94.0±0.5%
test-complex 32.4±4.9% 38.2±2.6% 38.8±1.2% 42.2±2.4% 40.9±1.5% 85.2±0.8% 91.8±0.2%

Generalization gap 40.9% 27.2% 31.6% 15.8% 17.2% 3.8% 2.3%

7.5.4 Results

7.5.4.1 Task Completion

We train the proposed framework and the end-to-end learning models on training programs and evaluate

their performances using the percentage of completed instructions on test and test-complex sets (shown in

Table 7.1). Our proposed framework achieves a satisfactory test performance and only suffers a negligible

drop (i.e. generalization gap) when it is evaluated on test-complex set. This can be attributed to the modular

design, which explicitly utilizes the structure and grammar of programs, allowing the two learning modules

(i.e. perception and policy) to focus on their local jobs. A more detailed failure analysis can be found

in Section 7.7.5.6.

On the other hand, all the end-to-end learning models suffer a significant performance drop between test

and test-complex sets, while it is less significant for the models learning from programs, potentially indicating

that models learning from instructions with explicit structures can generalize to complex instructions better.

Among them, Seq-LSTM achieves the best results on test set, but performs the worst on the test-complex

set. Transformer has smaller generalization gaps, which could be attributed to their multi-head attention

mechanism, capturing the instruction semantics better. By leveraging the explicit structure of programs,

Tree-RNN achieves the best generalization performance.

221

Seq-LSTM Tree-RNNTransformerProgram Seq-LSTM TransformerNatural Language

20 40 60 80 100
Number of Tokens

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

Seq-LSTM

20 40 60 80 100
Number of Tokens

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

Transformer

1 2 3 4 5
Number of Control Flows

0.3

0.4

0.5

0.6

C
om

pl
et

io
n

R
at

e

Seq-LSTM

1 2 3 4 5
Number of Control Flows

0.3

0.4

0.5

0.6

C
om

pl
et

io
n

R
at

e

Transformer

20 40 60 80 100
Number of Tokens

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

Program

20 40 60 80 100
Number of Tokens

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e
Natural Language

1 2 3 4 5
Number of Control Flows

0.3

0.4

0.5

0.6

C
om

pl
et

io
n

R
at

e

Program

1 2 3 4 5
Number of Control Flows

0.3

0.4

0.5

0.6

C
om

pl
et

io
n

R
at

e

Natural Language

(a) Instruction Length (b) Instruction Diversity

Figure 7.5: Analysis on end-to-end learningmodels: (a) Models learning from programs generalize better
to longer instructions. Transformer is more robust to longer instructions (Upper). Tree-RNN exploiting the
program structure generalizes the best, but performs worst for shorter programs (Lower). (b) Seq-LSTM
learning from both instructions performs worse as the diversity increases. Transformer learns better from
natural language when the instructions are less diverse (Upper). Transformer and Tree-RNN learning from
programs are more consistent as the diversity increases, yet perform worse on less diverse instructions
(Lower).

7.5.4.2 Analysis

An analysis on the end-to-end learning models with respect to varying instruction length and complexity

is shown in Figure 7.5, where all the instructions from test and test-complex sets are considered.

Instruction length. As shown in Figure 7.5 (a), both Seq-LSTM and Transformer suffer from a

performance drop as the instruction length increases. Seq-LSTM performs better when instructions are

shorter, but suffers from generalizing to longer instructions. On the other hand, Transformer may learn

on a more semantic level, which leads to similar overall performances across two types of instructions.

Tree-RNN leverages the structure of programs and achieves a better performance.

Instruction diversity. We define the diversity of a program based on the number of control flows it

contains (i.e. number of branches). Figure 7.5 (b) shows a clear trend of performance drop of all the models.

Transformer is more robust to diverse instructions which could be attributed to its better ability to learn

222

the semantics. While Seq-LSTM learning from programs are consistently better across different levels of

diversities, Tree-RNN demonstrates the most consistent performances.

7.5.5 Policy Modulation

We investigate if learning a multitask policy with the learned modulation mechanism is more effective. We

compare against the two most commonly used methods: concatenating a state and goal in a raw space

(Concat raw) or a latent space (Concat). An illustration is shown in Figure 7.4 (a). Since our state contains

an environment map, which is encoded by a CNN and MLP, we experiment modulating convoluted feature

maps (Modulation conv) or feature vectors (Modulation fc) or both (Modulation conv fc). Figure 7.4 (b)

demonstrate that the proposed policy modulation mechanism is more sample efficient. Table 7.1 shows that

the multitask policy learning using modulation achieves better performance on task completion.

7.6 Conclusion

We propose to utilize programs, structured in a formal language, as an expressive and precise way to specify

tasks instead of commonly used natural language instructions. We introduce the problem of developing

a framework that can comprehend a program as well as perceive and interact with the environment to

accomplish the desired task. To address this problem, we devise a modular framework, program guided

agent, which executes programs with a program interpreter by altering between querying a perception

module when a branching condition is encountered and instructing a policy to fulfill subtasks. We employ a

policy modulation mechanism to improve the efficiency of learning the multitask policy. The experimental

results on a 2D Minecraft environment demonstrate that the proposed framework learns to reliably fulfill

program instructions and generalize well to more complex instructions without additional training. We also

investigate the performance of various models that learn from programs and natural language descriptions

in an end-to-end fashion.

223

7.7 Appendix

7.7.1 Program Execution

We describe our program interpreter in Section 7.4 and provide more details in this section. The program

instruction considered in this work contains the following three components: (1) subtasks, (2) perceptions,

and (3) control flows. Accordingly, our Program Interpreter is designed to consist of (1) a parser to parse each

line of the program following the grammar defined by our DSL in Figure 7.2, and (2) a program executor

which executes the program conditioning on the parsed contents. The interpreter transforms the program

into a tree-like object by exploiting its structure (i.e. scopes) and then utilizes the parsed contents to traverse

it to execute the program.

A program tree is built by representing each line of a program as a tree node. Each tree node is a data

structure containing members: (1) node.line, the original line in the program, (2) node.isLeaf(), if the

current node is a leaf node (i.e. subtask), and (3) node.children, all the subroutines of the current node (i.e.

the processes under the scope of the current line of program). The interpreter will parse according to the

original line contained in the node, and decide whether to call the policy if it is a leaf node (subtask) or

produce a query to call the perception module, deciding which child node (subroutine) to go into.

The subroutines of a node should correspond to proper scoping of the program. For example, in Figure

1 in the main paper, the line if is_there[River] has subroutines mine(Wood), build_bridge(), if

agent[Iron]<3, and place(Iron,1,1), but not mine(Iron), which should be if agent[Iron]<3’s

subroutine.

Once the program tree is built, the program executor will perform a pre-order traversal to initiate the

execution. Algorithm 3 summarizes the details of the program execution utilizing the transformed program

tree.

224

Algorithm 3 Program Execution
Require: P : program to be executed

Require: s: environmental state

Require: π: agent policy parameterized by θ, Φ: perception module

Require: node: has member node.line as the original program line and children nodes node.children

1: procedure Execute(node)

2: if node.isLeaf() then

3: subtask = parse_subtask(node.line)

4: π(subtask, θ) ▷ Calls the agent policy to execute the subtask

5: else

6: control_flow, perception_query = parse_ctrl_percept(node.line)

7: h = Φ(perception_query, s) ▷ Calls the perception module with a query and state

8: control_flow h ▷ e.g. if, while, loop, calls the subroutines depending on h

9: for child in node.children do

10: Execute(child)

11: end for

12: end if

13: end procedure

7.7.2 DSL Design Principle

Since different domains require different DSLs, we aim to design our DSL by following a design principle

that would potentially allow us to easily adapt our DSL to different domain. Specifically, we develop a

DSL design principle that considers a general setting where an agent can perceive and interact with the

environment to fulfill some tasks. Accordingly, our DSL consist of control flows, perceptions, and actions.

While control flows are domain independent, perceptions and actions can be designed based on the domain

of interest, which would require certain expertise and domain knowledge. We aim to design our DSL that

225

is (1) intuitive: the actions and perceptions are intuitively align with human common sense, (2) modular:

actions are reasonably distinct and can be used to compose more complex behaviors, and (3) hierarchical: a

proper level of abstraction that enables describing long-horizon tasks.

7.7.3 Extended Related Work

We present an extended discussion of the related work in this section.

Multitask reinforcement learning. To achieve multi-task reinforcement learning, previous works

devised hierarchical approaches where an RL agent is trained to achieve a series of subtasks to accomplish

the task. In [11], a sequence of policy sketches is predefined to guide an agent towards the desired goal

by leveraging modularized neural network policies. [216] propose to learn a controller to predict to either

proceed, revert, or stay at a current subgoal, which is sampled from a list of simple symbolic instructions.

In this paper, hierarchical tasks are described by programs with increased diversity through branching

conditions, and therefore our framework is required to determine which branches in a program should be

executed. On the other hand, the framework proposed by [281] requires a subtask graph describing a set of

subtasks and their dependencies and aims to find the optimal subtask to execute. This is different from our

problem formulation where the agent is asked to follow a given program/procedure.

Hierarchical reinforcement learning. Our work is also closely related to hierarchical reinforcement

learning, where a meta-controller learns to predict which sub-policy to take at each time step [148, 20,

66, 84, 309, 160, 23, 203, 184]. Previous works also investigated in explicitly specifying sub-policy with

symbolic representations for meta-controller to utilize, or an explicit selection process of lower-level motor

skills [201, 299].

Programmable agents. We would like to emphasize that our work differs from programmable

agents [59] in motivation, problem formulations, proposed methods, and contributions. First, [59] concern

declarative programs which specify what to be computed (e.g. a target object in a reaching task). However,

226

the programs considered in our work are imperative, which how this is to be computed (i.e. a procedure).

Also, [59] consider only one-liner programs that contain only AND, OR, and object attributes. On the other

hand, we consider programs that are much longer and describe more complex procedures. While [59] aim

to generalize to novel combinations of object attributes, our work is mainly interested in generalizing to

more complex tasks (i.e. programs) by leveraging the structure of programs.

Programs vs. natural language instructions. In this work, we advocate utilizing programs as a task

representation and propose a modular framework that can leverage the structure of programs to address

this problem. Yet, natural language instructions enjoy better accessibility and are more intuitive to users

who do not have experience in programming languages. While addressing the accessibility of programs

or converting a natural language instruction to a more structural form is beyond the scope of this work,

we look forward to future research that leverages the strengths of both programs and natural language

instructions by bridging the gap between these two representations, such as synthesizing programs from

natural language [171, 60, 245], semantic parsing that bridges unstructured languages and structural formal

languages [344, 343], and naturalizing program [321].

7.7.4 Discussions on Learned Modulation Mechanisms

To fuse the information from an input domain (e.g. an image) with another condition domain (e.g. a

language query, image such as segmentation map, noise, etc.), a wide range of works have demonstrated

the effectiveness of predicting affine transforms based on the condition to scale and bias the input in visual

question answering [231, 230], image synthesis [6, 136, 220, 121], style transfer [71], recognition [119, 330],

reading comprehension [65], few-shot learning [217, 158], etc. Many of those works present an extensive

ablation study to compare the learned modulation against traditional ways to merge the information from

the input and condition domains.

227

Recently, a few works have employed a similar learned modulation technique to reinforcement learning

frameworks on learning to follow language instruction [21] and meta-reinforcement learning [316, 315].

However, there has not been a comprehensive ablation study that suggests fusing the information from the

input domain (e.g. a state) and the condition domain (e.g. a goal or a task embedding) for the reinforcement

learning setting. In this work, we conduct an ablation study in our 2D Minecraft environment where an

agent is required to fulfill a navigational task specified by a program and show the effectiveness of learning

to modulate input features with symbolically represented goal as well as present a number of modulation

variations (i.e. modulating the fully-connected layers or the convolutional layers or both). We look forward

to future research that verifies if this learned modulation mechanism is effective in dealing with more

complex domains such as robot manipulation or locomotion.

7.7.5 Additional Experimental Details

7.7.5.1 Environment Details

In the following paragraphs, we provide some details of the environment used in this work.

Objects in the environment. The major environmental resources that the agent can interact with

are: wood, gold, and iron. There is a certain probability that the environment will contain a river, which

the agent cannot go across unless a bridge is built (or pre-built). The environment is surrounded by brick

walls, which draws the boundaries of the world.

Agent action space. The agent’s actions are (1) crafting actions: including mining (collecting

resources), placing, building a bridge, and selling an item; and (2)motor actions: including moving to four

directions (up, down, left, right). The crafting actions are only allowed on the current grid cell the agent is

standing on, e.g. the subtask mine(gold) requires the agent to navigate to a specific location containing

a gold with motor actions, and then perform the crafting action mine at the current location. To build a

228

bridge, the agent should consume one of the wood it possesses. To sell an item, the agent needs to travel

to a merchant. With certain probabilities, there can be 2 to 4 merchants at different locations.

Initialization. During training, when each training program is sampled, a valid environment will

be randomly initialized, where validity refers to the property that the agent will be able to successfully

follow the program with sufficiently provided environmental resources. At test time, we pre-sample 20

valid initialization of the environment with 20 different random seeds to ensure the validity of the two test

sets.

Agent observation space (state representations). The state used in our reinforcement learning

policy consists of an environment map smap and an inventory status of the agent sinv. smap is of size

10× 10× 9, where each channel-wise slice of size 10× 10× 1 represents the binary existence of certain

objects at a specific location, e.g. if (3, 4, 2) is 1, it means there is a gold at location (3, 4) (environment

objects in channel dimension are zero-indexed). The objects represented by the channels are ordered as

follows: wood, iron, gold, agent, wall, goal (2-D representation of intended goal coordinates), river,

bridge, and merchant. The agent inventory status sinv is augmented with the agent location, resulting in

a 1-d integer vector of size 5. The ordered entry of such vector is as follows: agent’s wood counts, agent’s

iron counts, agent’s gold counts, agent’s location coordinate x, and then y.

Goal representations. For our proposed framework, we represent the goal of the subtask as an

1-D vector of size 10, produced by the program interpreter. The first five entries of the goal vector is a

one-hot representation of the subtask: goto, place, mine, sell, build_bridge. The 6th to 8th entries are

one-hot representation of the resources: wood, iron, and gold. The last two entries are the intended goal

locations. For example, place(iron,3,5) will be represented as [0, 1, 0, 0, 0, 0, 1, 0, 3, 5]. For end-to-end

learning models, such goal representation is produced by the input encoder as a continuous latent vector

representation.

229

(a) (b) (c) (d)

Figure 7.6: Exemplar rendered environment map. The agent, objects, and stuff are represented as
blocks with their corresponding textures. Specifically, the agent is represented as a female character. gold
is represented as a golden block, wood is shown as a tree, and iron is represented as a sliver block. River
is shown as a blue grid with water texture while bridge is presented as wooden grid. merchant is shown
as an alpaca, which is supposed to transport the sold objects. Notice that there are 2 merchants in (a) and
(b), while (c) and (d) contains 3 and 4 of them, respectively. The boundaries of the map are shown as brick
walls.

Exemplar environment maps. We show several exemplary rendered environment maps in Figure 7.6.

As can be seen, the essential resources such as wood, gold, iron are represented as block objects, where the

merchant is depicted by an alpaca. The agent is shown as a female human character. River grids, with

bridge blocks built on it is shown as the blue grid cells, where the bridge which should be transformed by

wood is of wooden texture. The Boundaries can be seen in the surroundings represented as brick wall grids.

7.7.5.2 Ground Truth Perceptions for End-to-end Learning Baselines

Since we train our perception module using ground truth information, we provide the ground truth

perception information to all our baselines yet failed to elaborate this in the original paper. Specifically, at

every time step, we feed the ground truth perception (i.e. the answer to the queries such as env[Gold]>0

and is_there[River]) to the baseline models. The ground truth perception is represented as a vector that

has a dimension of the number of all possible queries, and each element corresponds to a binary answer

to a query. Therefore, the baseline models can learn to utilize this ground truth information to infer the

desired subtasks. During testing time, the baseline models can still access to all this ground truth perception

information, even though it is usually not possible in practice. On the contrary, during testing time, our

230

perception module predicts the answer to given queries and the performance of the whole framework

depends on the predicted answers.

7.7.5.3 Task Instructions Details

Programs. We generate the program sets by sampling program tokens with normal distributions, and

constructing them according to the DSL grammar we define. The training set is composed of on average 32

tokens and 4.6 lines; the more complex test set, i.e. test-complex, contains on average 65 tokens and 9.8 lines.

We include the plotted statistics of various essential properties for the three datasets in Figure 7.11, Figure

7.12, and Figure 7.13, respectively. Note that the maximum indent of a program is the maximum depth of

its scope or the height of its transformed program tree. The number of recurring procedures includes both

while and loop.

Natural language instructions. For each of the three program sets, we chunked them into several

subsets of programs and assign them to annotators for their corresponding natural language translations.

The annotators were instructed to read the provided DSL to understand the details of program syntax as well

as some exemplary translations before they are allowed to start the task. The annotators were encouraged

to give diverse and colloquial translations to avoid constantly giving dull line-by-line translations. The

collected (translated) natural language instructions were then cleansed with spell checks and grammatical

errors fixes. On average, the annotators used 27, 28, and 61 words to describe the instructions for the train,

test, and test-complex sets respectively. The total vocabulary size of the natural language instructions is of

448.

Qualitative results on natural language analysis. We show several example data points from our

testing sets in Figure 7.10. The leftmost column displays natural language instructions, the middle column

shows our sampled ground truth programs, while the rightmost column illustrates how language can be

ambiguous and lead to possible alternative interpreted programs.

231

7.7.5.4 Network Architectures

The proposed framework and the end-to-end learning baselines are implemented in TensorFlow [1].

Our framework Perception module. The perception module takes a query q and a state s as input and

outputs a response h. A query has a size of 6× 186, since the longest query has a length of 6 and 186 is the

dimension of one-hot program tokens. Shorter queries are zero-padded to this size.

The state map smap is encoded by a CNN with four layers with channel size of 32, 64, 96, and 128. Each

convolutional layer has kernel size 3 and stride 2 and is followed by ReLU nonlinearity. The final feature

map is flattened to a feature vector, denoted as fm.

The state inventory sinv is encoded by a two-layer MLP with a channel size of 32 for both layers. Each

fully-connected layer is followed by ReLU nonlinearity. The resulting feature vector is denoted as fi.

Each token in the query is first encoded by a two-layer MLP with a channel size of 32 for both layers.

Each fully-connected layer is followed by ReLU nonlinearity. Then, all the query token features are

concatenated along the feature dimension to a single vector. This vector is then encoded by another

two-layer MLP with a channel size of 32 for both layers. Each fully-connected layer is followed by ReLU

nonlinearity. The resulting feature vector is denoted as fq .

All encoded features (fm, fi, and fq) are then concatenated along the feature dimensions to a single

vector. This vector is processed by a three-layer MLP with a channel size of 128, 64, and 32. Each fully-

connected layer is followed by ReLU nonlinearity. Finally, a linear fully-connected layer produces an output

with a size of 1, which should have a higher value if the response of the query is true and lower otherwise.

Policy. The policy takes a goal g and a state s as input and outputs an action distribution a, where the

state is encoded by two types of modules: (1) a four-layer CNN encoder to encode the state map smap, and

(2) a two-layer MLP to encode the agent inventory status sinv.

232

The goal g is encoded by a two-layer MLP with a channel size of 64 for both layers. Each fully-connected

layer is followed by ReLU nonlinearity. The resulting feature vector is denoted as fg . Given the encoded

goal vector, we employ four linear fully-connected layers to predict modulation parameters {γi, βi}{1,...,4}

for the state CNN encoder, where γ1 and β1 have size 32, γ2 and β2 have size 64, γ3 and β3 have size 96, and

γ4 and β4 have size 128. Note that these modulation parameters are predicted for modulating convolutional

features (i.e. modulation conv). For modulation fc, a linear fully-connected layer is used to produce γfc and

βfc with size 64.

A state map smap is encoded by four-layer CNN with channel size of 32, 64, 96, and 128. Each convolu-

tional layer has kernel size 3, strides 2, and is followed by ReLU nonlinearity. After each convolutional

layer, the produced feature maps e are modulated to γ · e+ β, where γ and β are broadcast along spatial

dimensions. The final feature map is flattened to a feature vector and denoted as fπ
m.

A state inventory sinv is encoded by a two-layer MLP with channel size of 64 for both layers. Each

fully-connected layer is followed by ReLU nonlinearity. The resulting feature vector is denoted as fπ
i .

The two encoded features (fπ
m and fπ

i) are then concatenated along the feature dimension. Two fully-

connected layers are used to process the feature with a channel size of 64 for both layers. Each layer is

followed by ReLU nonlinearity. The final encoded feature u is then modulated to γfc ·u+βfc ifmodulation

fc is used.

Finally, the modulated features û are used to produce an action distribution a and a predicted value V

using two separated MLPs. Each MLP has two fully-connected layers with a channel size of 64 for both

layers. A linear layer then outputs a vector with a size of 8 (the number of low-level actions). Another

linear layer outputs a vector with a size of 1 as the predicted value.

End-to-end learning models In addition to the input encoder, the end-to-end learning models can

utilize a mechanism to remember what subtasks from the instructions have been accomplished. The agent

can then explicitly memorize where it stands in the instruction while completing the task. We augment such

233

memorization mechanism utilizing the memory of another LSTM network, taking as inputs the encoded

states throughout the execution trajectory. After agent taking each action, the last hidden state encoding

the trajectory up to the current step is used to compute attention scores to pool the outputs of the input

encoders. For Tree-RNN encoder, we simply concatenate the hidden representation from memorization

LSTM with the root representation of Tree-RNN before feeding them to subsequent layers. The agent policy

network then learns to perform task conditioning on this attention-pooled latent instruction vector.

We provide details of our various end-to-end learning models in Table 7.2. Program token embedding

is jointly trained with learning the whole module, while GloVe [229] (50-D version) is used for word

embedding when instructions are natural languages.

Model Parameters Details

Seq-LSTM 0.62M LSTM size of 128, both program and word embeddings are
of dimension 50. Attention LSTM size of 128. Attention
weights of size [256 × 128], with bias of size [128]. Word
embeddings utilize pre-trained GloVe.

Tree-RNN 0.51M Program embeddings are of dimension 128. Attention LSTM
size of 128. Composition module (to aggregate all the chil-
dren representation of a node) is of size [128×128], and out-
put projection weights of size [128× 128], with bias of size
[128]. The program embeddings are average pooled across
the same program line, so that each line will be mapped to
a fixed dimension representation. The composition layer
is applied when combining pooled embedding from all the
children of a node.

Transformer 2.63M Number of hidden layers: 2, with 8 attention heads, and
intermediate size of 256. Hidden size is 128. No dropout is
applied.

Table 7.2: Architectural details for end-to-end learning models

7.7.5.5 Raw RGB Input

To verify if our framework can be extended to using high-dimensional raw state inputs (i.e. RGB image) as

inputs where a hand-crafted policy or perception module might not be easy to obtain, we performed an

234

additional experiment where the perception module and the policy are trained on raw RGB inputs instead

of the symbolic state representation. The results suggest that our framework can utilize RGB inputs while

maintaining similar performance (93.2% on the test set) and generalization ability (91.4% on the test-complex

set).

7.7.5.6 Failure Analysis

To gain a better understanding of how our proposed framework and the end-to-end learning models work

or fail, we conduct detailed failure analysis on the execution traces of our model. The analysis is organized

as follows:

• We first present an analysis of our framework on the subtasks that appear to be the first failed subtask,

which immediately leads to failing the whole task. This analysis sheds some light on which subtasks

most commonly cause the failure of task execution. (Section 7.7.5.6)

• We show an analysis of how many time steps each successfully executed subtask takes on average for

our framework, through which we explain which subtasks we find to be harder than others. (Section

7.7.5.6)

• We show additional visualizations on the completion rates of different end-to-end learning models

plotted with metrics not shown in the main paper, where we aim to deliver a more complete view of

how these models perform. (Section 7.7.5.6)

First failure rate of subtasks As the first step of failure analysis, we want to get an idea of which

subtasks cause the failure of the model in executions more often. To make this possible, we define “first

failed subtask” as the first subtask that ends as a failure in an unsuccessful execution of a program. Based

on this definition, we further define “first failure rate” as the percentage that an occurrence of a specific

subtask turns out to be the first failed subtask of the execution that includes it.

235

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

y

goto(x,y)

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

place(Iron,x,y)

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

place(Gold,x,y)

1 2 3 4 5 6 7 8
x

1
2
3
4
5
6
7
8

place(Wood,x,y)

mine(Iron) mine(Gold) mine(Wood)

sell(Iron) sell(Gold) sell(Wood)

build_bridge()
0.035

0.036

0.037

0.038

0.039

0.040

0.041

First Failure R
ate

Figure 7.7: First failure rate of subtasks. Every colored grid shows the first failure rate of each subtask.
From top-left to bottom-right, each block of grids show the results for subtask category goto, place,
build_bridge, mine, and sell. Warmer colors indicate higher first failure rate; while colder colors
indicate lower first failure rate. White grids indicate subtasks that either never occurs as first failed task in
any execution or do not exist in the executions that lead to this figure.

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

y

goto(x,y)

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

place(Iron,x,y)

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

place(Gold,x,y)

1 2 3 4 5 6 7 8
x

1
2
3
4
5
6
7
8

place(Wood,x,y)

mine(Iron) mine(Gold) mine(Wood)

sell(Iron) sell(Gold) sell(Wood)

build_bridge()

4.4

4.6

4.8

5.0

5.2 A
verage Subtask Tim

e C
ost

Figure 7.8: Average time cost of subtasks. The setup of this plot is similar to that of Figure 7.7. Warmer
colors indicate higher average subtask time cost; while colder colors indicate lower average subtask time
cost. White grids indicate subtasks that do not exist in the executions that lead to this figure.

We collect the first failure rate of all subtasks for the result we obtain from running our full model over

the more complex test set, i.e. test-complex. The results are plotted in a visually interpretable format in

Figure 7.7. As seen in the figure, subtasks in goto and place categories are more likely to be the first failed

subtask than subtasks in build_bridge, mine, and sell categories. Within the goto and place subtask

categories, subtasks requiring the agent to navigate to grid cells nearby the border of the world has a higher

first failure rate than ones nearby the center of the world. This shows that these tasks mentioned above are

more prone to failure than other subtasks.

236

Tree-RNNTransformerSeq-LSTM

2.5 5.0 7.5 10.0 12.5 15.0
Number of Lines

0.0

0.2

0.4

0.6

0.8

1.0
C

om
pl

et
io

n
R

at
e

0 1 2 3 4 5
Number of If or Else

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

0 1 2 3
Number of Loop or While

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

1.0 1.5 2.0 2.5 3.0
Max Indent

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

2.5 5.0 7.5 10.0 12.5
Number of Subtasks

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

5 10 15
Number of Branches

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pl
et

io
n

R
at

e

Figure 7.9: Additional analysis on completion rates. The results of executing program instructions on
both datasets are used to produce the six plots above. In each plot, each color corresponds to a different
model that we propose. For the two rightmost plots, there is a very small number of outliers that extends
out of the right boundary of the plot that we omit for visual interpretability reasons. Please note that the
use of colors in this figure is not the same as that in Figure 5 of the main paper.

Average time cost of subtasks Continuing from the previous analysis, we show the average time cost

of all successful subtask executions in Figure 7.8. As can be seen in the figure, subtasks in build_bridge,

mine, and sell categories take relatively smaller number of time steps to complete. In goto and place

categories, the closer to border the subtask requires the agent to reach, the more time consuming it gets for

the agent to complete the subtask. This corresponds to the finding in the analysis of first failure rates that

subtasks with destinations close to the border are more likely to fail. In other words, the closer to border

the agent has to reach, the more likely it is to fail the subtask.

Additional analysis on end-to-end learning models completion rates To conclude failure analysis,

we focus on the variation of completion rates of program executions with respect to different conditioning

variables. As shown in Figure 7.9, plots showing the trends of completion rates while evaluating with

different independent variables show that execution failure is more common in cases when the program

237

consists of larger number of lines, more loops and while statements, and larger number of subtasks. Note

that this subtask count is only a summation of the occurrence counts of each subtask in a program, which

does not accurately reflect the number of executions each subtask is being invoked (i.e. it does not reflect

the repetitive counts when there is a loop).

Meanwhile, the effect of the number of if and else statements and the maximum indent values of

programs on completion rates seem to vary across different models. For Seq-LSTM model, having a larger

number of if and else statements or having a larger max indent value results in more failures; while for

Transformer and Tree-RNN models, having larger values above results instead in fewer failures. This

is probably since Transformer and Tree-RNN models are designed in a way that deals with hierarchical

structures with jumps in instruction executions better (this point is also mentioned in the main paper).

Despite this difference in effects, the overall change in performance when the number of if and else

statements and the maximum indent value change is much less significant than that in the previous case.

During our analysis, we also designed an algorithm to calculate an estimate to the number of branches a

program has. Here, the number of branches is defined by the number of distinct sets of lines that a program

can be executed. For a program without control flows (no if, else-if, else, loop, and while statements), the

number of branches is always 1. For if, else-if, and else statements, the exact number of branches these

statements incur can be calculated easily. In cases of the loop and while statements, we treat loops as being

executed only once and while statements as if statements when we calculate the number of branches. The

result shown in the analysis does not reveal a clear trend. We attribute this result to two possibilities –

either the metric we create is not accurate enough, or it is not a very suitable metric to be inspected.

238

def run():
 mine(Wood)
 if agent[Iron] >= 4:
 mine(Wood)
 if is_there[Gold]:
 place(Iron, 3, 7)

Mine wood first. If agent has
more than 3 iron, mine wood.
If there is gold in the
environment, place iron at
(3,7).

def run():
 mine(Wood)
 if agent[Iron] >= 4:
 mine(Wood)
 if is_there[Gold]:
 place(Iron, 3, 7)

def run():
 loop(5):
 place(Iron, 7, 2)
 if agent[Iron] <= 9:
 sell(Gold)

Place an iron on (7,2) and
repeat 4 times, if agent has no
more than 9 iron then sell a
gold.

def run():
 place(Iron, 7, 2)
 loop(4):
 if agent[Iron] <= 9:
 sell(Gold)

Alternative Interpretation

def run():
 if is_there[River]:
 build_bridge()
 loop(3):
 mine(Gold)
 if env[Gold] <= 8:
 mine(Gold)
 sell(Iron)

If there is a river, build a
bridge. Repeat the followings
3 times: mine a gold, and if
environment has no more
than 8 gold, mine iron, and
then sell an iron.

Language Instructions

def run():
 if is_there[River]:
 build_bridge()
 loop(3):
 mine(Gold)
 if env[Gold] <= 8:
 mine(Gold)
 sell(Iron)

Ground Truth Program##

(a)

(b)

(c)

Figure 7.10: Exemplar data and language ambiguity. The goal of the examples above is to show that
natural language instructions while being flexible enough to capture the high-level semantics of the task,
can be ambiguous in different ways and thus might lead to impaired performance. In example (a), the
modifier "repeat the following 3 times" has an unclear scope, resulting in two possible interpretations
shown in program format on the right side; in example (b), "repeat 4 times" can be used to modify either
the previous part of the description or the latter part of it, resulting in ambiguity; in example (c), the last
sentence starting with "If" has unclear scope. In all of the above cases, a model that learns to execute
instructions presented in natural language format might fail to execute the instructions successfully because
of the ambiguity of the language instructions.

7.7.5.7 Hyperparameters

We use the following hyperparameters to train A2C agents for our model and all the end-to-end learning

models: learning rate: 1× 10−3, number of environment: 64, number of workers: 64, and number of update

roll-out steps: 5.

7.7.5.8 Computational Resources

We train all our models on a single Nvidia Titan-X GPU, in a 40 core Ubuntu 16.04 Linux server.

239

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Number of Branches

1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

Max Indent

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Number of Subtasks

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Lines

0 1 2 3 4
0

1

2

3

4

Number of Recurring Procedures (Loops)

0 20 40 60
0.00

0.01

0.02

0.03

0.04

0.05
Number of Tokens

Figure 7.11: Program set statistics for training set (train).

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Number of Branches

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Max Indent

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Subtasks

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
Number of Lines

0 1 2 3
0.0

0.5

1.0

1.5

2.0

Number of Recurring Procedures (Loops)

10 20 30 40 50 60 70
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Number of Tokens

Figure 7.12: Program set statistics for same complexity testing set (test).

240

0 2 4 6
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Number of Branches

2.0 2.5 3.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Max Indent

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

Number of Subtasks

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5
Number of Lines

0 2 4 6
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Number of Recurring Procedures (Loops)

50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Number of Tokens

Figure 7.13: Program set statistics for more complex testing set (test-complex).

241

Chapter 8

Learning to Compose Skills

8.1 Introduction

While humans are capable of learning complex tasks by reusing previously learned skills, composing and

mastering complex skills are not as trivial as sequentially executing those acquired skills. Instead, it requires

a smooth transition between skills since the final pose of one skill may not be appropriate to initiate the

following one. For example, scoring in basketball with a quick shot after receiving a ball can be decomposed

into catching and shooting. However, it is still difficult for beginners who have learned to catch passes

and statically shoot. To master this skill, players must practice adjusting their footwork and body into a

comfortable shooting pose after catching a pass.

Can machines similarly learn new and complex tasks by reusing acquired skills and learning transitions

between them? Learning to perform composite and long-term tasks from scratch requires extensive

exploration and sophisticated reward design, which can introduce undesired behaviors [250]. Thus, instead

of employing intricate reward functions and learning from scratch, modular methods sequentially execute

acquired skills with a rule-based meta-policy, enabling machines to solve complicated tasks [222, 201, 11].

These modular approaches assume that a task can be clearly decomposed into several subtasks which are

smoothly connected to each other. In other words, an ending state of one subtask falls within the set of

starting states, initiation set, of the next subtask [291]. However, this assumption does not hold in many

242

continuous control problems where a given skill may be executed in starting states not considered during

training or designing and thus, fail to achieve its goal.

To bridge the gap between skills, we propose a transition policy which learns to smoothly navigate from

an ending state of a skill to suitable initial states of the following skill, as illustrated in Figure 8.1. However,

learning a transition policy between skills without reward shaping is difficult as the only available learning

signal is the sparse reward for the successful execution of the next skill. Sparse success/failure reward is

challenging to learn from due to the temporal credit assignment problem [292] and the lack of information

from failing trajectories. To alleviate these problems, we propose a proximity predictor which outputs the

proximity to the initiation set of the next skill and acts as a dense reward function for the transition policy.

The main contributions of this paper include (1) the concept of learning transition policies to smoothly

connect primitive skills; (2) a novel modular framework with transition policies that is able to compose

complex skills by reusing existing skills; and (3) a joint training algorithm with the proximity predictor

specifically designed for efficiently training transition policies. This framework is suited for learning

complex skills that require sequential execution of acquired primitive skills, which are common for humans

yet relatively unexplored in robot learning. Our experiments on simulated environments demonstrate that

employing transition policies solves complex continuous control tasks which traditional policy gradient

methods struggle at.

8.2 Related Work

Learning continuous control of diverse behaviors in locomotion [190, 111, 228] and robotic manipulation [91]

is an active research area in reinforcement learning (RL). While some complex tasks can be solved through

extensive reward engineering [209], undesired behaviors often emerge [250] when tasks require several

different primitive skills. Moreover, training complex skills from scratch is not computationally practical.

243

FINAL

Good initial states for 𝑝"#$%Bad initial states for 𝑝"#$%

𝑝&'()

𝑝&'() 𝑝"#$% execution success

𝑝"#$% execution fail𝑝"#$% 𝑝"#$%
𝑝&'() execution

Transition policy execution

Figure 8.1: Concept of a transition policy. Composing complex skills using primitive skills requires
smooth transitions between primitive skills since a following primitive skill might not be robust to ending
states of the previous one. In this example, the ending states (red circles) of the primitive policy pjump are
not good initial states to execute the following policy pwalk. Therefore, executing pwalk from these states
will fail (red arrow). To smoothly connect the two primitive policies, we propose a transition policy which
navigates an agent to suitable initial states for pwalk (dashed arrow), leading to a successful execution of
pwalk (green arrow).

Real-world tasks often require diverse behaviors and longer temporal dependencies. In hierarchical

reinforcement learning, the option framework [291] learns meta actions (options), a series of primitive

actions over a period of time. Typically, a hierarchical reinforcement learning framework consists of two

components: a high-level meta-controller and low-level controllers. A meta-controller determines the

order of subtasks to achieve the final goal and chooses corresponding low-level controllers that generate a

sequence of primitive actions. Unsupervised approaches to discover meta actions have been proposed [260,

56, 20, 309, 66, 164, 84, 248, 184]. However, to deal with more complex tasks, additional supervision

signals [11, 190, 299] or pre-defined low-level controllers [148, 216] are required.

To exploit pre-trainedmodules as low-level controllers, neuralmodule networks [12] have been proposed,

which construct a new network dedicated to a given query using a collection of reusable modules. In

the RL domain, a meta-controller is trained to follow instructions [216] and demonstrations [332], and

support multi-level hierarchies [99]. In the robotics domain, Pastor et al. [222], Kober et al. [142], and

Mülling et al. [201] have proposed a modular approach that learns table tennis by selecting appropriate

low-level controllers. On the other hand, Andreas, Klein, and Levine [11] and Frans et al. [84] learn abstract

skills while experiencing a distribution of tasks and then solve a new task with the learned primitive

skills. However, these modular approaches result in undefined behavior when two skills are not smoothly

244

𝑎&'

FINAL

Jumping Walking Crawling

Meta-policy

Transition policy Primitive policy

joint pos.
vel.
acc.

curb pos.

Observation

Observation Observation

= success
or failure

c
<latexit sha1_base64="ykyXXryT0qS3g8DIJalovrnOKSA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSiw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp3FQ9t+q1apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/CL4zZ</latexit><latexit sha1_base64="ykyXXryT0qS3g8DIJalovrnOKSA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSiw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp3FQ9t+q1apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/CL4zZ</latexit><latexit sha1_base64="ykyXXryT0qS3g8DIJalovrnOKSA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSiw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp3FQ9t+q1apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/CL4zZ</latexit><latexit sha1_base64="ykyXXryT0qS3g8DIJalovrnOKSA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSiw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp3FQ9t+q1apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/CL4zZ</latexit>

⌧
<latexit sha1_base64="Dk1kSmpn8/yAFc/1TZ8TK1W+hyU=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhM7PLTK8QQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlEph0fe/vdLG5tb2Tnm3srd/cHhUPT5p2yQzjLdYIhPTjajlUmjeQoGSd1PDqYok70STu9zvPHFjRaIfcZryUNGRFrFgFHOpjzQbVGt+3V+ArJOgIDUo0BxUv/rDhGWKa2SSWtsL/BTDGTUomOTzSj+zPKVsQke856imittwtrh1Ti6cMiRxYlxpJAv198SMKmunKnKdiuLYrnq5+J/XyzC+DWdCpxlyzZaL4kwSTEj+OBkKwxnKqSOUGeFuJWxMDWXo4qm4EILVl9dJ+6oe+PXg4brWuC7iKMMZnMMlBHADDbiHJrSAwRie4RXePOW9eO/ex7K15BUzp/AH3ucPHPeOOg==</latexit><latexit sha1_base64="Dk1kSmpn8/yAFc/1TZ8TK1W+hyU=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhM7PLTK8QQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlEph0fe/vdLG5tb2Tnm3srd/cHhUPT5p2yQzjLdYIhPTjajlUmjeQoGSd1PDqYok70STu9zvPHFjRaIfcZryUNGRFrFgFHOpjzQbVGt+3V+ArJOgIDUo0BxUv/rDhGWKa2SSWtsL/BTDGTUomOTzSj+zPKVsQke856imittwtrh1Ti6cMiRxYlxpJAv198SMKmunKnKdiuLYrnq5+J/XyzC+DWdCpxlyzZaL4kwSTEj+OBkKwxnKqSOUGeFuJWxMDWXo4qm4EILVl9dJ+6oe+PXg4brWuC7iKMMZnMMlBHADDbiHJrSAwRie4RXePOW9eO/ex7K15BUzp/AH3ucPHPeOOg==</latexit><latexit sha1_base64="Dk1kSmpn8/yAFc/1TZ8TK1W+hyU=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhM7PLTK8QQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlEph0fe/vdLG5tb2Tnm3srd/cHhUPT5p2yQzjLdYIhPTjajlUmjeQoGSd1PDqYok70STu9zvPHFjRaIfcZryUNGRFrFgFHOpjzQbVGt+3V+ArJOgIDUo0BxUv/rDhGWKa2SSWtsL/BTDGTUomOTzSj+zPKVsQke856imittwtrh1Ti6cMiRxYlxpJAv198SMKmunKnKdiuLYrnq5+J/XyzC+DWdCpxlyzZaL4kwSTEj+OBkKwxnKqSOUGeFuJWxMDWXo4qm4EILVl9dJ+6oe+PXg4brWuC7iKMMZnMMlBHADDbiHJrSAwRie4RXePOW9eO/ex7K15BUzp/AH3ucPHPeOOg==</latexit><latexit sha1_base64="Dk1kSmpn8/yAFc/1TZ8TK1W+hyU=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhM7PLTK8QQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlEph0fe/vdLG5tb2Tnm3srd/cHhUPT5p2yQzjLdYIhPTjajlUmjeQoGSd1PDqYok70STu9zvPHFjRaIfcZryUNGRFrFgFHOpjzQbVGt+3V+ArJOgIDUo0BxUv/rDhGWKa2SSWtsL/BTDGTUomOTzSj+zPKVsQke856imittwtrh1Ti6cMiRxYlxpJAv198SMKmunKnKdiuLYrnq5+J/XyzC+DWdCpxlyzZaL4kwSTEj+OBkKwxnKqSOUGeFuJWxMDWXo4qm4EILVl9dJ+6oe+PXg4brWuC7iKMMZnMMlBHADDbiHJrSAwRie4RXePOW9eO/ex7K15BUzp/AH3ucPHPeOOg==</latexit>

= termination

1

2 3 4

at, ⌧trans
<latexit sha1_base64="0eQ/607gU1FaD6YVSJ6+yrxGHbk=">AAACAHicbZDLSsNAFIYnXmu9RV24cBMsggspiRR0WXDjsoK9QBvCyXTSDp1MwsyJWEI2voobF4q49THc+TZOLwtt/WHg4z/ncOb8YSq4Rtf9tlZW19Y3Nktb5e2d3b19++CwpZNMUdakiUhUJwTNBJesiRwF66SKQRwK1g5HN5N6+4EpzRN5j+OU+TEMJI84BTRWYB9DgBc9hCzIe8geMUcFUhdFYFfcqjuVswzeHCpkrkZgf/X6Cc1iJpEK0LrruSn6OSjkVLCi3Ms0S4GOYMC6BiXETPv59IDCOTNO34kSZZ5EZ+r+nsgh1noch6YzBhzqxdrE/K/WzTC69nMu0wyZpLNFUSYcTJxJGk6fK0ZRjA0AVdz81aFDUEDRZFY2IXiLJy9D67LqGb6rVeq1eRwlckJOyTnxyBWpk1vSIE1CSUGeySt5s56sF+vd+pi1rljzmSPyR9bnD8tRlyE=</latexit><latexit sha1_base64="0eQ/607gU1FaD6YVSJ6+yrxGHbk=">AAACAHicbZDLSsNAFIYnXmu9RV24cBMsggspiRR0WXDjsoK9QBvCyXTSDp1MwsyJWEI2voobF4q49THc+TZOLwtt/WHg4z/ncOb8YSq4Rtf9tlZW19Y3Nktb5e2d3b19++CwpZNMUdakiUhUJwTNBJesiRwF66SKQRwK1g5HN5N6+4EpzRN5j+OU+TEMJI84BTRWYB9DgBc9hCzIe8geMUcFUhdFYFfcqjuVswzeHCpkrkZgf/X6Cc1iJpEK0LrruSn6OSjkVLCi3Ms0S4GOYMC6BiXETPv59IDCOTNO34kSZZ5EZ+r+nsgh1noch6YzBhzqxdrE/K/WzTC69nMu0wyZpLNFUSYcTJxJGk6fK0ZRjA0AVdz81aFDUEDRZFY2IXiLJy9D67LqGb6rVeq1eRwlckJOyTnxyBWpk1vSIE1CSUGeySt5s56sF+vd+pi1rljzmSPyR9bnD8tRlyE=</latexit><latexit sha1_base64="0eQ/607gU1FaD6YVSJ6+yrxGHbk=">AAACAHicbZDLSsNAFIYnXmu9RV24cBMsggspiRR0WXDjsoK9QBvCyXTSDp1MwsyJWEI2voobF4q49THc+TZOLwtt/WHg4z/ncOb8YSq4Rtf9tlZW19Y3Nktb5e2d3b19++CwpZNMUdakiUhUJwTNBJesiRwF66SKQRwK1g5HN5N6+4EpzRN5j+OU+TEMJI84BTRWYB9DgBc9hCzIe8geMUcFUhdFYFfcqjuVswzeHCpkrkZgf/X6Cc1iJpEK0LrruSn6OSjkVLCi3Ms0S4GOYMC6BiXETPv59IDCOTNO34kSZZ5EZ+r+nsgh1noch6YzBhzqxdrE/K/WzTC69nMu0wyZpLNFUSYcTJxJGk6fK0ZRjA0AVdz81aFDUEDRZFY2IXiLJy9D67LqGb6rVeq1eRwlckJOyTnxyBWpk1vSIE1CSUGeySt5s56sF+vd+pi1rljzmSPyR9bnD8tRlyE=</latexit><latexit sha1_base64="0eQ/607gU1FaD6YVSJ6+yrxGHbk=">AAACAHicbZDLSsNAFIYnXmu9RV24cBMsggspiRR0WXDjsoK9QBvCyXTSDp1MwsyJWEI2voobF4q49THc+TZOLwtt/WHg4z/ncOb8YSq4Rtf9tlZW19Y3Nktb5e2d3b19++CwpZNMUdakiUhUJwTNBJesiRwF66SKQRwK1g5HN5N6+4EpzRN5j+OU+TEMJI84BTRWYB9DgBc9hCzIe8geMUcFUhdFYFfcqjuVswzeHCpkrkZgf/X6Cc1iJpEK0LrruSn6OSjkVLCi3Ms0S4GOYMC6BiXETPv59IDCOTNO34kSZZ5EZ+r+nsgh1noch6YzBhzqxdrE/K/WzTC69nMu0wyZpLNFUSYcTJxJGk6fK0ZRjA0AVdz81aFDUEDRZFY2IXiLJy9D67LqGb6rVeq1eRwlckJOyTnxyBWpk1vSIE1CSUGeySt5s56sF+vd+pi1rljzmSPyR9bnD8tRlyE=</latexit>

at, ⌧pc
<latexit sha1_base64="SXcjfjd44UHVDxLievnEKU+0ZeE=">AAAB9XicbZBNS8NAEIY39avWr6pHL4tF8CAlkYIeC148VrAf0MYw2W7bpZtN2J0oJfR/ePGgiFf/izf/jds2B219YeHhnRlm9g0TKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDshGC6F4k0UKHkn0RyiUPJ2OL6Z1duPXBsRq3ucJNyPYKjEQDBAaz1AgBc9hDTIkoBNg3LFrbpz0VXwcqiQXI2g/NXrxyyNuEImwZiu5yboZ6BRMMmnpV5qeAJsDEPetagg4sbP5ldP6Zl1+nQQa/sU0rn7eyKDyJhJFNrOCHBklmsz879aN8XBtZ8JlaTIFVssGqSSYkxnEdC+0JyhnFgApoW9lbIRaGBogyrZELzlL69C67LqWb6rVeq1PI4iOSGn5Jx45IrUyS1pkCZhRJNn8krenCfnxXl3PhatBSefOSZ/5Hz+AJw1koc=</latexit><latexit sha1_base64="SXcjfjd44UHVDxLievnEKU+0ZeE=">AAAB9XicbZBNS8NAEIY39avWr6pHL4tF8CAlkYIeC148VrAf0MYw2W7bpZtN2J0oJfR/ePGgiFf/izf/jds2B219YeHhnRlm9g0TKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDshGC6F4k0UKHkn0RyiUPJ2OL6Z1duPXBsRq3ucJNyPYKjEQDBAaz1AgBc9hDTIkoBNg3LFrbpz0VXwcqiQXI2g/NXrxyyNuEImwZiu5yboZ6BRMMmnpV5qeAJsDEPetagg4sbP5ldP6Zl1+nQQa/sU0rn7eyKDyJhJFNrOCHBklmsz879aN8XBtZ8JlaTIFVssGqSSYkxnEdC+0JyhnFgApoW9lbIRaGBogyrZELzlL69C67LqWb6rVeq1PI4iOSGn5Jx45IrUyS1pkCZhRJNn8krenCfnxXl3PhatBSefOSZ/5Hz+AJw1koc=</latexit><latexit sha1_base64="SXcjfjd44UHVDxLievnEKU+0ZeE=">AAAB9XicbZBNS8NAEIY39avWr6pHL4tF8CAlkYIeC148VrAf0MYw2W7bpZtN2J0oJfR/ePGgiFf/izf/jds2B219YeHhnRlm9g0TKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDshGC6F4k0UKHkn0RyiUPJ2OL6Z1duPXBsRq3ucJNyPYKjEQDBAaz1AgBc9hDTIkoBNg3LFrbpz0VXwcqiQXI2g/NXrxyyNuEImwZiu5yboZ6BRMMmnpV5qeAJsDEPetagg4sbP5ldP6Zl1+nQQa/sU0rn7eyKDyJhJFNrOCHBklmsz879aN8XBtZ8JlaTIFVssGqSSYkxnEdC+0JyhnFgApoW9lbIRaGBogyrZELzlL69C67LqWb6rVeq1PI4iOSGn5Jx45IrUyS1pkCZhRJNn8krenCfnxXl3PhatBSefOSZ/5Hz+AJw1koc=</latexit><latexit sha1_base64="SXcjfjd44UHVDxLievnEKU+0ZeE=">AAAB9XicbZBNS8NAEIY39avWr6pHL4tF8CAlkYIeC148VrAf0MYw2W7bpZtN2J0oJfR/ePGgiFf/izf/jds2B219YeHhnRlm9g0TKQy67rdTWFvf2Nwqbpd2dvf2D8qHRy0Tp5rxJotlrDshGC6F4k0UKHkn0RyiUPJ2OL6Z1duPXBsRq3ucJNyPYKjEQDBAaz1AgBc9hDTIkoBNg3LFrbpz0VXwcqiQXI2g/NXrxyyNuEImwZiu5yboZ6BRMMmnpV5qeAJsDEPetagg4sbP5ldP6Zl1+nQQa/sU0rn7eyKDyJhJFNrOCHBklmsz879aN8XBtZ8JlaTIFVssGqSSYkxnEdC+0JyhnFgApoW9lbIRaGBogyrZELzlL69C67LqWb6rVeq1PI4iOSGn5Jx45IrUyS1pkCZhRJNn8krenCfnxXl3PhatBSefOSZ/5Hz+AJw1koc=</latexit>

⌧pc
<latexit sha1_base64="QOOQ5ofVdAHhLfY+VT0BMXS8/4g=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfuBbQib7aZdutmE3YlQQv+FFw+KePXfePPfuG1z0NYXFh7emWFn3jCVwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFJphlvs0QmuhdSw6VQvI0CJe+lmtM4lLwbTm7n9e4T10Yk6gGnKfdjOlIiEoyitR4HSLMgTwM2C6o1t+4uRNbBK6AGhVpB9WswTFgWc4VMUmP6npuin1ONgkk+qwwyw1PKJnTE+xYVjbnx88XGM3JhnSGJEm2fQrJwf0/kNDZmGoe2M6Y4Nqu1uflfrZ9hdOPnQqUZcsWWH0WZJJiQ+flkKDRnKKcWKNPC7krYmGrK0IZUsSF4qyevQ+eq7lm+b9SajSKOMpzBOVyCB9fQhDtoQRsYKHiGV3hzjPPivDsfy9aSU8ycwh85nz/ij5D/</latexit><latexit sha1_base64="QOOQ5ofVdAHhLfY+VT0BMXS8/4g=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfuBbQib7aZdutmE3YlQQv+FFw+KePXfePPfuG1z0NYXFh7emWFn3jCVwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFJphlvs0QmuhdSw6VQvI0CJe+lmtM4lLwbTm7n9e4T10Yk6gGnKfdjOlIiEoyitR4HSLMgTwM2C6o1t+4uRNbBK6AGhVpB9WswTFgWc4VMUmP6npuin1ONgkk+qwwyw1PKJnTE+xYVjbnx88XGM3JhnSGJEm2fQrJwf0/kNDZmGoe2M6Y4Nqu1uflfrZ9hdOPnQqUZcsWWH0WZJJiQ+flkKDRnKKcWKNPC7krYmGrK0IZUsSF4qyevQ+eq7lm+b9SajSKOMpzBOVyCB9fQhDtoQRsYKHiGV3hzjPPivDsfy9aSU8ycwh85nz/ij5D/</latexit><latexit sha1_base64="QOOQ5ofVdAHhLfY+VT0BMXS8/4g=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfuBbQib7aZdutmE3YlQQv+FFw+KePXfePPfuG1z0NYXFh7emWFn3jCVwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFJphlvs0QmuhdSw6VQvI0CJe+lmtM4lLwbTm7n9e4T10Yk6gGnKfdjOlIiEoyitR4HSLMgTwM2C6o1t+4uRNbBK6AGhVpB9WswTFgWc4VMUmP6npuin1ONgkk+qwwyw1PKJnTE+xYVjbnx88XGM3JhnSGJEm2fQrJwf0/kNDZmGoe2M6Y4Nqu1uflfrZ9hdOPnQqUZcsWWH0WZJJiQ+flkKDRnKKcWKNPC7krYmGrK0IZUsSF4qyevQ+eq7lm+b9SajSKOMpzBOVyCB9fQhDtoQRsYKHiGV3hzjPPivDsfy9aSU8ycwh85nz/ij5D/</latexit><latexit sha1_base64="QOOQ5ofVdAHhLfY+VT0BMXS8/4g=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfuBbQib7aZdutmE3YlQQv+FFw+KePXfePPfuG1z0NYXFh7emWFn3jCVwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFJphlvs0QmuhdSw6VQvI0CJe+lmtM4lLwbTm7n9e4T10Yk6gGnKfdjOlIiEoyitR4HSLMgTwM2C6o1t+4uRNbBK6AGhVpB9WswTFgWc4VMUmP6npuin1ONgkk+qwwyw1PKJnTE+xYVjbnx88XGM3JhnSGJEm2fQrJwf0/kNDZmGoe2M6Y4Nqu1uflfrZ9hdOPnQqUZcsWWH0WZJJiQ+flkKDRnKKcWKNPC7krYmGrK0IZUsSF4qyevQ+eq7lm+b9SajSKOMpzBOVyCB9fQhDtoQRsYKHiGV3hzjPPivDsfy9aSU8ycwh85nz/ij5D/</latexit>

⌧trans<latexit sha1_base64="C58Zhhu5B2jTGUetWFF7FAOl28Y=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyURQZcFNy4r2As0IUymk3boZBJmTsQQ4qu4caGIWx/EnW/jtM1CW38Y+PjPOZwzf5gKrsFxvq219Y3Nre3aTn13b//g0D467ukkU5R1aSISNQiJZoJL1gUOgg1SxUgcCtYPpzezev+BKc0TeQ95yvyYjCWPOCVgrMBueECyoPCAPUIBikhdloHddFrOXHgV3AqaqFInsL+8UUKzmEmggmg9dJ0U/IIo4FSwsu5lmqWETsmYDQ1KEjPtF/PjS3xmnBGOEmWeBDx3f08UJNY6j0PTGROY6OXazPyvNswguvYLLtMMmKSLRVEmMCR4lgQeccUoiNwAoYqbWzGdEEUomLzqJgR3+cur0LtouYbvLpttp4qjhk7QKTpHLrpCbXSLOqiLKMrRM3pFb9aT9WK9Wx+L1jWrmmmgP7I+fwADYpWV</latexit><latexit sha1_base64="C58Zhhu5B2jTGUetWFF7FAOl28Y=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyURQZcFNy4r2As0IUymk3boZBJmTsQQ4qu4caGIWx/EnW/jtM1CW38Y+PjPOZwzf5gKrsFxvq219Y3Nre3aTn13b//g0D467ukkU5R1aSISNQiJZoJL1gUOgg1SxUgcCtYPpzezev+BKc0TeQ95yvyYjCWPOCVgrMBueECyoPCAPUIBikhdloHddFrOXHgV3AqaqFInsL+8UUKzmEmggmg9dJ0U/IIo4FSwsu5lmqWETsmYDQ1KEjPtF/PjS3xmnBGOEmWeBDx3f08UJNY6j0PTGROY6OXazPyvNswguvYLLtMMmKSLRVEmMCR4lgQeccUoiNwAoYqbWzGdEEUomLzqJgR3+cur0LtouYbvLpttp4qjhk7QKTpHLrpCbXSLOqiLKMrRM3pFb9aT9WK9Wx+L1jWrmmmgP7I+fwADYpWV</latexit><latexit sha1_base64="C58Zhhu5B2jTGUetWFF7FAOl28Y=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyURQZcFNy4r2As0IUymk3boZBJmTsQQ4qu4caGIWx/EnW/jtM1CW38Y+PjPOZwzf5gKrsFxvq219Y3Nre3aTn13b//g0D467ukkU5R1aSISNQiJZoJL1gUOgg1SxUgcCtYPpzezev+BKc0TeQ95yvyYjCWPOCVgrMBueECyoPCAPUIBikhdloHddFrOXHgV3AqaqFInsL+8UUKzmEmggmg9dJ0U/IIo4FSwsu5lmqWETsmYDQ1KEjPtF/PjS3xmnBGOEmWeBDx3f08UJNY6j0PTGROY6OXazPyvNswguvYLLtMMmKSLRVEmMCR4lgQeccUoiNwAoYqbWzGdEEUomLzqJgR3+cur0LtouYbvLpttp4qjhk7QKTpHLrpCbXSLOqiLKMrRM3pFb9aT9WK9Wx+L1jWrmmmgP7I+fwADYpWV</latexit><latexit sha1_base64="C58Zhhu5B2jTGUetWFF7FAOl28Y=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyURQZcFNy4r2As0IUymk3boZBJmTsQQ4qu4caGIWx/EnW/jtM1CW38Y+PjPOZwzf5gKrsFxvq219Y3Nre3aTn13b//g0D467ukkU5R1aSISNQiJZoJL1gUOgg1SxUgcCtYPpzezev+BKc0TeQ95yvyYjCWPOCVgrMBueECyoPCAPUIBikhdloHddFrOXHgV3AqaqFInsL+8UUKzmEmggmg9dJ0U/IIo4FSwsu5lmqWETsmYDQ1KEjPtF/PjS3xmnBGOEmWeBDx3f08UJNY6j0PTGROY6OXazPyvNswguvYLLtMMmKSLRVEmMCR4lgQeccUoiNwAoYqbWzGdEEUomLzqJgR3+cur0LtouYbvLpttp4qjhk7QKTpHLrpCbXSLOqiLKMrRM3pFb9aT9WK9Wx+L1jWrmmmgP7I+fwADYpWV</latexit>

Figure 8.2: Our modular network augmented with transition policies. To perform a complex task,
our model repeats the following steps: (1) The meta-policy chooses a primitive policy of index c; (2) The
corresponding transition policy helps initiate the chosen primitive policy; (3) The primitive policy executes
the skill; and (4) A success or failure signal for the primitive skill is produced.

connected. Our proposed framework aims to bridge this gap by training transition policies in a model-free

manner to navigate the agent from unseen states for following skills to suitable initial states.

Deep RL techniques for continuous control demand dense reward signals; otherwise, they suffer

from long training time. Instead of manual reward shaping for denser reward, adversarial reinforcement

learning [114, 190, 323, 21] employs a discriminator which learns to judge the state or the policy, and

the policy takes as rewards the output of the discriminator. While those methods assume ground truth

trajectories or goal states are given, our method collects both success and failure trajectories online to train

proximity predictors which provide rewards for transition policies.

8.3 Approach

In this paper, we address the problem of solving a complex task that requires sequential composition of

primitive skills given only sparse and binary rewards (i.e. subtask completion reward). The sequential

execution of primitive skills fails when two consecutive skills are not smoothly connected. We propose

a modular framework with transition policies that learn to make transition between one policy to the

subsequent policy, and therefore, can exploit the given primitive skills to compose complex skills. To

245

accelerate training of transition policies, additional networks, proximity predictors, are jointly trained to

provide proximity rewards as intermediate feedback to transition policies. In Section 8.3.2, we describe our

framework in details. Next, in Section 8.3.3, we elaborate how transition policies are efficiently trained

with induced proximity reward.

8.3.1 Preliminaries

We formulate our problem as a Markov decision process defined by a tuple {S,A, T , R, ρ, γ} of states,

actions, transition probability, reward, initial state distribution, and discount factor. An action distribution

of an agent is represented as a policy πθ(at|st), where st ∈ S is a state, at ∈ A is an action at time t, and

θ are the parameters of the policy. An initial state s0 is randomly sampled from ρ, and then, an agent

iteratively takes an action at sampled from a policy πθ(at|st) and receives a reward rt until the episode

ends. The performance of the agent is evaluated based on a discounted return R =
∑T−1

t=0 γtrt, where T is

the episode horizon.

8.3.2 Modular Framework with Transition Policies

To learn a new task given primitive skills {p1, p2, . . . , pn}, we design a modular framework that consists

of the following components: a meta-policy, primitive policies, and transition policies. The meta-policy

chooses a primitive skill pc to execute at the beginning and whenever the primitive skill is terminated. Prior

to running pc, the transition policy for pc is executed to bring the current state to a plausible initial state

for pc, and therefore, pc can be successfully performed. This procedure is repeated to compose complex

skills as illustrated in Figure 8.2 and Algorithm 5.

We denote the meta-policy as πmeta(pc|s), where c ∈ [1, n] is a primitive policy index. The observation

of the meta-policy contains the low-level information of primitives and task specifications indicating

high-level goals (e.g. moving direction and target object position). For example, a walking primitive only

246

takes joint information as observation while the meta-policy additionally takes target direction. In this

paper, we use a rule-based meta-policy and focus on transitioning between consecutive primitive policies.

Once a primitive skill pc is chosen to be executed, the agent generates an action at ∼ πpc(a|st) based

on the current state st. Note that we did not differentiate state spaces for primitive polices because of the

simplicity of notations (e.g. the observation of the jumping primitive contains a distance to a curb while

that of the walking primitive only has joint pose and velocities). Every primitive policy is required to

generate termination signals τpc ∈ {continue, success, fail} to indicate policy completion and whether it

believes the execution is successful or not. While our method is agnostic to the form of primitive policies

(e.g. rule-based, inverse kinematics), we consider the case of a pre-trained neural network in this paper.

For smooth transitions between primitive policies, we add a transition policy πϕc(a|s) before executing

primitive skill pc, which guides an agent to pc’s initiation set, where ϕc is the parameters of the transition

policy for pc. Note that the transition policy for pc is shared across different preceding primitive policies

since a successful transition is defined by the success of the following primitive skill pc. For brevity of

notation, we omit the primitive policy index c in the following equations where unambiguous. The transition

policy’s state and action space are the same as the primitive policy’s. The transition policy also learns a

termination signal τtrans which indicates transition termination to successfully initiate pc. Our framework

contains one transition policy for each primitive skill, in total n transition policies {πϕ1 , πϕ2 , . . . , πϕn}.

8.3.3 Training Transition Policies

In our framework, transition policies are trained to make the execution of the corresponding following

primitive policies successful. During rollouts, transition trajectories are collected and each trajectory can be

naively labeled by the success execution of its corresponding primitive policy. Then, transition policies are

trained to maximize the average success of the respective primitive policy. In this scenario, by definition, the

247

FINAL

Jumping Walking Crawling

transition 1 transition 2 transition 3

Proximity predictor Transition policy
Success buffer

Failure buffer

Proximity rewardsuccess

failure

p3
<latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit><latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit><latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit><latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit>

⇡1
<latexit sha1_base64="41qpZeab6F5HP2mdzxATRxWyecw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FwBtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wd2p45x</latexit><latexit sha1_base64="41qpZeab6F5HP2mdzxATRxWyecw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FwBtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wd2p45x</latexit><latexit sha1_base64="41qpZeab6F5HP2mdzxATRxWyecw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FwBtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wd2p45x</latexit><latexit sha1_base64="41qpZeab6F5HP2mdzxATRxWyecw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FwBtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wd2p45x</latexit> ⇡2

<latexit sha1_base64="pjS++59c/GUE3UrgzDBxESRDgoc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FoDGo1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w94K45y</latexit><latexit sha1_base64="pjS++59c/GUE3UrgzDBxESRDgoc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FoDGo1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w94K45y</latexit><latexit sha1_base64="pjS++59c/GUE3UrgzDBxESRDgoc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FoDGo1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w94K45y</latexit><latexit sha1_base64="pjS++59c/GUE3UrgzDBxESRDgoc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30/FoDGo1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w94K45y</latexit> ⇡3
<latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="nurogXhKyCNan2aanwCbOxR+Xyo=">AAAB4XicbZDNSgMxFIXv1L9aq1a3boJFcFVmdKFLwY3LCk5baIeSSW/b0ExmSO4IZegzuHGhiC/lzrcx/Vlo64HAxzkJuffEmZKWfP/bK21t7+zulfcrB9XDo+PaSbVl09wIDEWqUtOJuUUlNYYkSWEnM8iTWGE7ntzP8/YzGitT/UTTDKOEj7QcSsHJWWEvk/3rfq3uN/yF2CYEK6jDSs1+7as3SEWeoCahuLXdwM8oKrghKRTOKr3cYsbFhI+w61DzBG1ULIadsQvnDNgwNe5oYgv394uCJ9ZOk9jdTDiN7Xo2N//LujkNb6NC6iwn1GL50TBXjFI235wNpEFBauqACyPdrEyMueGCXD8VV0KwvvImtK4agd8IHn0owxmcwyUEcAN38ABNCEGAhBd4g3dPe6/ex7Kukrfq7RT+yPv8AVWkjRw=</latexit><latexit sha1_base64="nurogXhKyCNan2aanwCbOxR+Xyo=">AAAB4XicbZDNSgMxFIXv1L9aq1a3boJFcFVmdKFLwY3LCk5baIeSSW/b0ExmSO4IZegzuHGhiC/lzrcx/Vlo64HAxzkJuffEmZKWfP/bK21t7+zulfcrB9XDo+PaSbVl09wIDEWqUtOJuUUlNYYkSWEnM8iTWGE7ntzP8/YzGitT/UTTDKOEj7QcSsHJWWEvk/3rfq3uN/yF2CYEK6jDSs1+7as3SEWeoCahuLXdwM8oKrghKRTOKr3cYsbFhI+w61DzBG1ULIadsQvnDNgwNe5oYgv394uCJ9ZOk9jdTDiN7Xo2N//LujkNb6NC6iwn1GL50TBXjFI235wNpEFBauqACyPdrEyMueGCXD8VV0KwvvImtK4agd8IHn0owxmcwyUEcAN38ABNCEGAhBd4g3dPe6/ex7Kukrfq7RT+yPv8AVWkjRw=</latexit><latexit sha1_base64="cRNbjwKAJqqf9ZvAm/D2p8QVSAQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0n0UI9FLx4rmLbQhrLZbtqlm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkobm1vbO+Xdyt7+weFR9fikbZJMM+6zRCa6G1LDpVDcR4GSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2glv5+KwfWgWnPr7gJknXgFqUGB1qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1MoxuglyoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSvqp7bt17cGvN2yKOMpzBOVyCBw1owj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w94b45v</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit><latexit sha1_base64="fKDXT9VAJodpq0yFh6wurVsvUxc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3L/vVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LuqeW/cermqN2yKOMpzAKZyDB9fQgHtogg8MODzDK7w50nlx3p2PRWvJKWaO4Q+czx95r45z</latexit>

p2
<latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit>

at
<latexit sha1_base64="cg9eTEqUtCZqkwCW5khYw4me7mE=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfax71a9mjcHWSV+QapQoNF3v3qDhGUxV8gkNabreykGOdUomOTTSi8zPKVsTIe8a6miMTdBPj91Ss6sMiBRom0pJHP190ROY2MmcWg7Y4ojs+zNxP+8bobRdZALlWbIFVssijJJMCGzv8lAaM5QTiyhTAt7K2EjqilDm07FhuAvv7xKWhc136v595fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AE4yjcw=</latexit><latexit sha1_base64="cg9eTEqUtCZqkwCW5khYw4me7mE=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfax71a9mjcHWSV+QapQoNF3v3qDhGUxV8gkNabreykGOdUomOTTSi8zPKVsTIe8a6miMTdBPj91Ss6sMiBRom0pJHP190ROY2MmcWg7Y4ojs+zNxP+8bobRdZALlWbIFVssijJJMCGzv8lAaM5QTiyhTAt7K2EjqilDm07FhuAvv7xKWhc136v595fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AE4yjcw=</latexit><latexit sha1_base64="cg9eTEqUtCZqkwCW5khYw4me7mE=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfax71a9mjcHWSV+QapQoNF3v3qDhGUxV8gkNabreykGOdUomOTTSi8zPKVsTIe8a6miMTdBPj91Ss6sMiBRom0pJHP190ROY2MmcWg7Y4ojs+zNxP+8bobRdZALlWbIFVssijJJMCGzv8lAaM5QTiyhTAt7K2EjqilDm07FhuAvv7xKWhc136v595fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AE4yjcw=</latexit><latexit sha1_base64="cg9eTEqUtCZqkwCW5khYw4me7mE=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfax71a9mjcHWSV+QapQoNF3v3qDhGUxV8gkNabreykGOdUomOTTSi8zPKVsTIe8a6miMTdBPj91Ss6sMiBRom0pJHP190ROY2MmcWg7Y4ojs+zNxP+8bobRdZALlWbIFVssijJJMCGzv8lAaM5QTiyhTAt7K2EjqilDm07FhuAvv7xKWhc136v595fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cD5/AE4yjcw=</latexit>

t
<latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit><latexit sha1_base64="fInOqGTCCrWkRGJFOZWK1l6FLBY=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBNMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK75X8etX5eptHkcBTuEMLsCHa6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDgKYz4</latexit>

p1
<latexit sha1_base64="VNts+i3MDO/Tb2F25NGquZU27Os=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQzrwBtWaW3cXIOvEK0gNCrQG1a/+MGFZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC9OnZELqwxJlGhbCslC/T2R09iYaRzazpji2Kx6c/E/r5dhdBPkQqUZcsWWi6JMEkzI/G8yFJozlFNLKNPC3krYmGrK0KZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8gfP5A/s7jYo=</latexit><latexit sha1_base64="VNts+i3MDO/Tb2F25NGquZU27Os=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQzrwBtWaW3cXIOvEK0gNCrQG1a/+MGFZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC9OnZELqwxJlGhbCslC/T2R09iYaRzazpji2Kx6c/E/r5dhdBPkQqUZcsWWi6JMEkzI/G8yFJozlFNLKNPC3krYmGrK0KZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8gfP5A/s7jYo=</latexit><latexit sha1_base64="VNts+i3MDO/Tb2F25NGquZU27Os=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQzrwBtWaW3cXIOvEK0gNCrQG1a/+MGFZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC9OnZELqwxJlGhbCslC/T2R09iYaRzazpji2Kx6c/E/r5dhdBPkQqUZcsWWi6JMEkzI/G8yFJozlFNLKNPC3krYmGrK0KZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8gfP5A/s7jYo=</latexit><latexit sha1_base64="VNts+i3MDO/Tb2F25NGquZU27Os=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSQzrwBtWaW3cXIOvEK0gNCrQG1a/+MGFZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC9OnZELqwxJlGhbCslC/T2R09iYaRzazpji2Kx6c/E/r5dhdBPkQqUZcsWWi6JMEkzI/G8yFJozlFNLKNPC3krYmGrK0KZTsSF4qy+vk/ZV3XPr3n2j1mwUcZThDM7hEjy4hibcQQt8YDCCZ3iFN0c6L86787FsLTnFzCn8gfP5A/s7jYo=</latexit>

p2
<latexit sha1_base64="3ubTlAh8r00l6s79wAiqXMmnmBY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHpJhbViuuFV3CbJJvJxUIEdrWP4ajGKWRlwhk9SYvucm6GdUo2CSz0uD1PCEsikd876likbc+Nny1Dm5ssqIhLG2pZAs1d8TGY2MmUWB7YwoTsy6txD/8/ophjd+JlSSIldstShMJcGYLP4mI6E5QzmzhDIt7K2ETaimDG06JRuCt/7yJunUqp5b9e7rlWY9j6MIF3AJ1+BBA5pwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hD5zPH/y/jYs=</latexit><latexit sha1_base64="3ubTlAh8r00l6s79wAiqXMmnmBY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHpJhbViuuFV3CbJJvJxUIEdrWP4ajGKWRlwhk9SYvucm6GdUo2CSz0uD1PCEsikd876likbc+Nny1Dm5ssqIhLG2pZAs1d8TGY2MmUWB7YwoTsy6txD/8/ophjd+JlSSIldstShMJcGYLP4mI6E5QzmzhDIt7K2ETaimDG06JRuCt/7yJunUqp5b9e7rlWY9j6MIF3AJ1+BBA5pwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hD5zPH/y/jYs=</latexit><latexit sha1_base64="3ubTlAh8r00l6s79wAiqXMmnmBY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHpJhbViuuFV3CbJJvJxUIEdrWP4ajGKWRlwhk9SYvucm6GdUo2CSz0uD1PCEsikd876likbc+Nny1Dm5ssqIhLG2pZAs1d8TGY2MmUWB7YwoTsy6txD/8/ophjd+JlSSIldstShMJcGYLP4mI6E5QzmzhDIt7K2ETaimDG06JRuCt/7yJunUqp5b9e7rlWY9j6MIF3AJ1+BBA5pwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hD5zPH/y/jYs=</latexit><latexit sha1_base64="3ubTlAh8r00l6s79wAiqXMmnmBY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHpJhbViuuFV3CbJJvJxUIEdrWP4ajGKWRlwhk9SYvucm6GdUo2CSz0uD1PCEsikd876likbc+Nny1Dm5ssqIhLG2pZAs1d8TGY2MmUWB7YwoTsy6txD/8/ophjd+JlSSIldstShMJcGYLP4mI6E5QzmzhDIt7K2ETaimDG06JRuCt/7yJunUqp5b9e7rlWY9j6MIF3AJ1+BBA5pwBy1oA4MxPMMrvDnSeXHenY9Va8HJZ87hD5zPH/y/jYs=</latexit>

p3
<latexit sha1_base64="V29pvUQG3MKQlVRztaqqIJOthf8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD8ngelCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlfVT236t3XKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/5DjYw=</latexit><latexit sha1_base64="V29pvUQG3MKQlVRztaqqIJOthf8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD8ngelCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlfVT236t3XKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/5DjYw=</latexit><latexit sha1_base64="V29pvUQG3MKQlVRztaqqIJOthf8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD8ngelCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlfVT236t3XKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/5DjYw=</latexit><latexit sha1_base64="V29pvUQG3MKQlVRztaqqIJOthf8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD8ngelCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlfVT236t3XKo1aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/5DjYw=</latexit>

s
<latexit sha1_base64="/IiGRHESG3M+Np9+OEPleOzFcjU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8CAlkYIeC148tmA/oA1ls520azebsLsRSugv8OJBEa/+JG/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R1nCqGLRaLWHUDqlFwiS3DjcBuopBGgcBOMLmb1ztPqDSP5YOZJuhHdCR5yBk11mrqQbniVt2FyDp4OVQgV2NQ/uoPY5ZGKA0TVOue5ybGz6gynAmclfqpxoSyCR1hz6KkEWo/Wyw6IxfWGZIwVvZJQxbu74mMRlpPo8B2RtSM9Wptbv5X66UmvPUzLpPUoGTLj8JUEBOT+dVkyBUyI6YWKFPc7krYmCrKjM2mZEPwVk9eh/Z11bPcrFXqV3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7I+fwB2AmM4Q==</latexit><latexit sha1_base64="/IiGRHESG3M+Np9+OEPleOzFcjU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8CAlkYIeC148tmA/oA1ls520azebsLsRSugv8OJBEa/+JG/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R1nCqGLRaLWHUDqlFwiS3DjcBuopBGgcBOMLmb1ztPqDSP5YOZJuhHdCR5yBk11mrqQbniVt2FyDp4OVQgV2NQ/uoPY5ZGKA0TVOue5ybGz6gynAmclfqpxoSyCR1hz6KkEWo/Wyw6IxfWGZIwVvZJQxbu74mMRlpPo8B2RtSM9Wptbv5X66UmvPUzLpPUoGTLj8JUEBOT+dVkyBUyI6YWKFPc7krYmCrKjM2mZEPwVk9eh/Z11bPcrFXqV3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7I+fwB2AmM4Q==</latexit><latexit sha1_base64="/IiGRHESG3M+Np9+OEPleOzFcjU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8CAlkYIeC148tmA/oA1ls520azebsLsRSugv8OJBEa/+JG/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R1nCqGLRaLWHUDqlFwiS3DjcBuopBGgcBOMLmb1ztPqDSP5YOZJuhHdCR5yBk11mrqQbniVt2FyDp4OVQgV2NQ/uoPY5ZGKA0TVOue5ybGz6gynAmclfqpxoSyCR1hz6KkEWo/Wyw6IxfWGZIwVvZJQxbu74mMRlpPo8B2RtSM9Wptbv5X66UmvPUzLpPUoGTLj8JUEBOT+dVkyBUyI6YWKFPc7krYmCrKjM2mZEPwVk9eh/Z11bPcrFXqV3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7I+fwB2AmM4Q==</latexit><latexit sha1_base64="/IiGRHESG3M+Np9+OEPleOzFcjU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8CAlkYIeC148tmA/oA1ls520azebsLsRSugv8OJBEa/+JG/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R1nCqGLRaLWHUDqlFwiS3DjcBuopBGgcBOMLmb1ztPqDSP5YOZJuhHdCR5yBk11mrqQbniVt2FyDp4OVQgV2NQ/uoPY5ZGKA0TVOue5ybGz6gynAmclfqpxoSyCR1hz6KkEWo/Wyw6IxfWGZIwVvZJQxbu74mMRlpPo8B2RtSM9Wptbv5X66UmvPUzLpPUoGTLj8JUEBOT+dVkyBUyI6YWKFPc7krYmCrKjM2mZEPwVk9eh/Z11bPcrFXqV3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7I+fwB2AmM4Q==</latexit>

(s, v)
<latexit sha1_base64="RRa6u0/ZJ3kNMgHedjm9ZAHaZs4=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJFqFDKrgh6LHjxWMGthXYp2XS2Dc1mlyRbKKW/wYsHRbz6g7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYWNza3unuFva2z84PCofn7R0kimGPktEotoh1Si4RN9wI7CdKqRxKPApHN3N609jVJon8tFMUgxiOpA84owaa/lVXRtf9soVt+4uRNbBy6ECuZq98le3n7AsRmmYoFp3PDc1wZQqw5nAWambaUwpG9EBdixKGqMOpotlZ+TCOn0SJco+acjC/T0xpbHWkzi0nTE1Q71am5v/1TqZiW6DKZdpZlCy5UdRJohJyPxy0ucKmRETC5QpbnclbEgVZcbmU7IheKsnr0Prqu5ZfriuNGp5HEU4g3Ooggc30IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuGPnM8f3taN/A==</latexit><latexit sha1_base64="RRa6u0/ZJ3kNMgHedjm9ZAHaZs4=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJFqFDKrgh6LHjxWMGthXYp2XS2Dc1mlyRbKKW/wYsHRbz6g7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYWNza3unuFva2z84PCofn7R0kimGPktEotoh1Si4RN9wI7CdKqRxKPApHN3N609jVJon8tFMUgxiOpA84owaa/lVXRtf9soVt+4uRNbBy6ECuZq98le3n7AsRmmYoFp3PDc1wZQqw5nAWambaUwpG9EBdixKGqMOpotlZ+TCOn0SJco+acjC/T0xpbHWkzi0nTE1Q71am5v/1TqZiW6DKZdpZlCy5UdRJohJyPxy0ucKmRETC5QpbnclbEgVZcbmU7IheKsnr0Prqu5ZfriuNGp5HEU4g3Ooggc30IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuGPnM8f3taN/A==</latexit><latexit sha1_base64="RRa6u0/ZJ3kNMgHedjm9ZAHaZs4=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJFqFDKrgh6LHjxWMGthXYp2XS2Dc1mlyRbKKW/wYsHRbz6g7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYWNza3unuFva2z84PCofn7R0kimGPktEotoh1Si4RN9wI7CdKqRxKPApHN3N609jVJon8tFMUgxiOpA84owaa/lVXRtf9soVt+4uRNbBy6ECuZq98le3n7AsRmmYoFp3PDc1wZQqw5nAWambaUwpG9EBdixKGqMOpotlZ+TCOn0SJco+acjC/T0xpbHWkzi0nTE1Q71am5v/1TqZiW6DKZdpZlCy5UdRJohJyPxy0ucKmRETC5QpbnclbEgVZcbmU7IheKsnr0Prqu5ZfriuNGp5HEU4g3Ooggc30IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuGPnM8f3taN/A==</latexit><latexit sha1_base64="RRa6u0/ZJ3kNMgHedjm9ZAHaZs4=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJFqFDKrgh6LHjxWMGthXYp2XS2Dc1mlyRbKKW/wYsHRbz6g7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYWNza3unuFva2z84PCofn7R0kimGPktEotoh1Si4RN9wI7CdKqRxKPApHN3N609jVJon8tFMUgxiOpA84owaa/lVXRtf9soVt+4uRNbBy6ECuZq98le3n7AsRmmYoFp3PDc1wZQqw5nAWambaUwpG9EBdixKGqMOpotlZ+TCOn0SJco+acjC/T0xpbHWkzi0nTE1Q71am5v/1TqZiW6DKZdpZlCy5UdRJohJyPxy0ucKmRETC5QpbnclbEgVZcbmU7IheKsnr0Prqu5ZfriuNGp5HEU4g3Ooggc30IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuGPnM8f3taN/A==</latexit>

Figure 8.3: Training of transition policies and proximity predictors. After executing a primitive
policy, a previously performed transition trajectory is labeled and added to a replay buffer based on the
execution success. A proximity predictor is trained on states sampled from the two buffers to output the
proximity to the initiation set. The predicted proximity serves as a reward to encourage the transition
policy to move toward good initial states for the corresponding primitive policy.

only available learning signal for the transition policies is the sparse and binary rewards for the completion

of the next task.

To alleviate the sparsity of rewards and maximize the objective of moving to viable initial states for the

next primitive, we propose a proximity predictor that learns and provides a dense reward, dubbed proximity

reward, of how close transition states are to the initiation set of the corresponding primitive pc as shown in

Figure 8.3. We denote a proximity predictor as Pωc which is parameterized by ωc. We define the proximity

of a state as the future discounted proximity, v = δstep, where step is the number of steps required to reach

an initiation set of the following primitive policy. The proximity of a state can also be a linearly discounted

function such as v = 1 − δ · step. We refer the readers to Appendix Section 8.6 for comparison of two

proximity functions.

The proximity predictor is trained to minimize a mean squared error of proximity prediction:

LP (ω,BS ,BF) =
1

2
E(s,v)∼BS [(Pω(s)− v)2] +

1

2
Es∼BF [Pω(s)

2], (8.1)

248

where BS and BF are collections of states from success and failure transition trajectories, respectively. To

estimate the proximity to an initiation set, BS contains not only the state that directly leads to the success

of the following primitive policy, but also the intermediate states of the successful trajectories with its

proximity. By minimizing this objective, given a state, the proximity predictor is learned to predict 1 if the

state is in the initiation set, a value that is between 0 and 1 if the state leads the agent to end up with a

desired initial states, and 0 when the state leads to a failure.

The goal of a transition policy is to get close to an initiation set which can be formulated as seeking a

state s predicted to be in the initiation set by the proximity predictor (i.e. Pω(s) is close to 1). To achieve

this goal, the transition policy learns to maximize proximity prediction at the ending state of the transition

trajectoryPω(sT). In addition to providing reward at the end, we also use the increase of predicted proximity

to the initiation set, Pω(st+1)−Pω(st), at every timestep as a reward, dubbed proximity reward, to create a

denser reward. The transition policy is trained to maximize the expected discounted return:

Rtrans(ϕ) = E(s0,s1,...,sT)∼πϕ

[
γTPω(sT) +

T−1∑

t=0

γt(Pω(st+1)− Pω(st))
]
. (8.2)

However, in general skill learning scenarios, ground truth states (BS and BF) for training proximity

predictors are not available. Hence, the training data for a proximity predictor is obtained online during

training its corresponding transition policy. Specifically, we label the states in a transition trajectory as

success or failure based on whether the following primitive is successfully executed or not, and add them

into the corresponding buffers BS or BF , respectively. As stated in Algorithm 4, we train transition policies

and proximity predictors by alternating between an Adam [140] gradient step on ω to minimize Equation

(8.1) with respect to Pω and a PPO [265] step on ϕ to maximize Equation (8.2) with respect to πϕ. We refer

readers to Appendix Section 8.6 for further details on training.

249

In summary, we propose to compose complex skills with transition policies that enable smooth transition

between previously acquired primitive policies. Specifically, we propose to reward transition policies based

on how close the current state is to suitable initial states of the subsequent policy (i.e. initiation set). To

provide the proximity of a state, we collect failing and successful trajectories on the fly and train a proximity

predictor to predict the proximity.

Utilizing the learned proximity predictors and proximity rewards for training transition policies is

beneficial in the following perspectives: (1) the dense rewards speed up transition policy training by

differentiating failing states from states in a successful trajectory; and (2) the joint training mechanism

prevents a transition policy from getting stuck in local optima. Whenever a transition policy gets into a

local optimum (i.e. fails the following skill with a high proximity reward), the proximity predictor learns to

lower the proximity for the failing transition as those states are added to its failure buffer, escaping the

local optimum.

8.4 Experiments

We conducted experiments on two classes of continuous control tasks: robotic manipulation and locomotion.

To illustrate the potential of the proposed framework, modular framework with Transition Policies (TP), we

designed a set of complex tasks that require agents to utilize diverse primitive skills which are not optimized

for smooth composition. All of our environments are simulated in the MuJoCo physics engine [300].

8.4.1 Baselines

We evaluate our method to answer how transition policies benefit complex task learning and how joint

training with proximity predictors boosts training of transition policies. To investigate the impact of the

transition policy, we compared policies learned from dense rewards with our modular framework that only

learns from sparse and binary rewards (i.e. subtask completion rewards). Moreover, we conducted ablation

250

FINAL

(e) Hurdle

(f) Obstacle course

(a) Repetitive picking up

(b) Repetitive catching

(d) Patrol

(c) Serve

Figure 8.4: Tasks and success count curves of our model (blue), TRPO (purple), PPO (magenta), and transition
policies (TP) trained on task reward (green) and sparse proximity reward (yellow). Our model achieves the
best performance and convergence time. Note that TRPO and PPO are trained 5 times longer than ours
with dense rewards since TRPO and PPO do not have primitive skills and learn from scratch. In the success
count curves, different temporal scales are used for TRPO and PPO (bottom x-axis) and ours (top x-axis).

studies to dissect each component in the training method of transition polices. To answer these questions,

we compare the following methods:

• Trust Region Policy Optimization with dense reward (TRPO) represents a state-of-the-art policy

gradient method [264], which we use for the standard RL comparison.

• Proximal Policy Optimization with dense reward (PPO) is another state-of-the-art policy gradient

method [265], which is more stable than TRPO with smaller batch sizes.

251

• Without transition policies (Without-TP) sequentially executes primitive policies without transition

policies and has no learnable components.

• Transition policies trained on task rewards (TP-Task) represents a modular network augmented

with transition policies learned from the sparse and binary reward (i.e. subtask completion reward),

whereas our model learns from the dense proximity reward.

• Transition policies trained on sparse proximity rewards (TP-Sparse) is a variant of our model

which has the proximity reward only at the end of the transition trajectory. In contrast, our model learns

from dense proximity rewards generated every timestep.

• Transition policies trained on dense proximity rewards (TP-Dense, Ours) is our final model where

transition policies learn from dense proximity rewards.

Initially, we tried comparing baseline methods with our method using only sparse and binary rewards.

However, the baselines could not solve any of the tasks due to the complexity and sparse reward of the

environments. To provide more competitive comparisons, we engineer dense rewards for baselines (TRPO

and PPO) to boost their performance and give baselines 5 times longer training times. We show that

transitions with sparse rewards can compete with and even outperform baselines learning from dense

rewards. As the performance of TRPO and PPO varies significantly between runs, we train each task with 3

different random seeds and report mean and standard deviation in Figure 8.4.

8.4.2 Robotic Manipulation

For robotic manipulation, we simulate a Kinova Jaco, a 9 DoF robotic arm with 3 fingers. The agent receives

full state information, including the absolute location of external objects. The agent uses joint torque

control to perform actions. The results are shown in Figure 8.4 and Table 8.1.

Pre-trained primitives. There are four pre-trained primitives available: Picking up, Catching, Tossing,

and Hitting. Picking up requires the robotic arm to pick up a small block, which is randomly placed on the

252

Table 8.1: Success count for robotic manipulation, comparing our method against baselines with or without
transition policies (TP). Our method achieves the best performance over both RL baselines and the ablated
variants. Each entry in the table represents average success count and standard deviation over 50 runs with
3 random seeds.

Reward Repetitive picking up Repetitive catching Serve

TRPO dense 0.69 ± 0.46 4.54 ± 1.21 0.32 ± 0.47

PPO dense 0.95 ± 0.53 4.26 ± 1.63 0.00 ± 0.00

Without TP sparse 0.99 ± 0.08 1.00 ± 0.00 0.11 ± 0.32

TP-Task sparse 0.99 ± 0.08 4.87 ± 0.58 0.05 ± 0.21

TP-Sparse sparse 1.52 ± 1.12 4.88 ± 0.59 0.92 ± 0.27

TP-Dense (ours) sparse 4.84 ± 0.63 4.97 ± 0.33 0.92 ± 0.27

table. If the box is not picked up after a certain amount of time, the agent fails. Catching learns to catch a

block that is thrown towards the arm with random initial position and velocity. The agent fails if it does

not catch and stably hold the box for a certain amount of time. Tossing requires the robot to pick up a box,

toss it vertically in the air, and land the box at a specified position. Hitting requires the robot to hit a box

dropped overhead at a target ball.

Repetitive picking up. The Repetitive picking up task requires the agent to complete the Picking up

task 5 times. After each successful pick, the box disappears and a new box will be placed randomly on

the table again. Our model achieves the best performance and converges the fastest by learning from the

proposed proximity reward. With our dense proximity reward at every transition step, we alleviate credit

assignment when compared to providing a sparse proximity reward (TP-Sparse) or using a sparse task

reward (TP-Task). Conversely, TRPO and PPO with dense rewards take significantly longer to learn and is

unable to pick up the second box as the ending pose after the first picking up is too unstable to initialize

the next picking up.

Repetitive catching. Similar to Repetitive picking up, the Repetitive catching task requires the agent to

catch boxes consecutively up to 5 times. In this task, other than the modular network without a transition

253

policy, all baselines are able to eventually learn while our model still learns the fastest. We believe this is

because the Catching primitive policy has a larger initiation set and therefore, the sparse reward problem is

less severe since random exploration is able to succeed with a higher chance.

Serve. Inspired by tennis, Serve requires the robot to toss the ball and hit it at a target. Even with an

extensively engineered reward, TRPO and PPO baselines fail to learn because Hitting is not able to learn

to cover all terminal states of Tossing (i.e. a set of initial states for Hitting is large which demands longer

training time). In contrast, learning to recover from Tossing’s ending states to Hitting’s initiation set is

easier for exploration (11% of Tossing’s ending states are covered by Hitting’s initiation set as can be seen in

Table 8.1), which reduces the complexity of the task. Thus, our method and the sparse proximity reward

baseline are both able to solve it. However, the ablated variant trained on task reward shows high success

rates at the beginning of training and collapses after 100 iterations. The performance drops because the

transition policy tries to solve failure cases by increasing the transition length and it reaches to a point that

it hardly gets reward. This result shows that once the policy falls into local optima, it is not able to escape

because the policy will never get a sparse task reward. On the other hand, our method is robust to local

optima since the jointly learned dense proximity reward provides a learning signal to an agent even though

it cannot get a task reward.

8.4.3 Locomotion

For locomotion, we simulate a 9 DoF planar (2D) bipedal walker. The observation of the agent includes

joint position, rotation, and velocity. When the agent needs to interact with objects in the environment, we

provide additional input such as distance to the curb and ceiling in front of the agent. The agent uses joint

torque control to perform actions. The results are shown in Figure 8.4 and Table 8.2.

Pre-trained primitives. Forward and Backward require the walker to walk forward and backward

with a certain velocity, respectively. Balancing requires the walker to robustly stand still under the random

254

Table 8.2: Success count for locomotion, comparing our method against baselines with or without transition
policies (TP). Our method outperforms all baselines in Patrol and Obstacle course. In Hurdle, the reward
function for TRPO was extensively engineered, which is not directly comparable to our method. Our
method outperforms baselines learning from sparse reward, showing the effectiveness of the proposed
proximity predictor. Each entry in the table represents average success count and standard deviation over
50 runs with 3 random seeds.

Reward Patrol Hurdle Obstacle course

TRPO dense 1.37 ± 0.52 4.13 ± 1.54 0.98 ± 1.09

PPO dense 1.53 ± 0.53 2.87 ± 1.92 0.85 ± 1.07

Without TP sparse 1.02 ± 0.14 0.49 ± 0.75 0.72 ± 0.72

TP-Task sparse 1.69 ± 0.63 1.73 ± 1.28 1.08 ± 0.78

TP-Sparse sparse 2.51 ± 1.26 1.47 ± 1.53 1.32 ± 0.99

TP-Dense (Ours) sparse 3.33 ± 1.38 3.14 ± 1.69* 1.90 ± 1.45

external forces. Jumping requires the walker jump over a randomly located curb and land safely. Crawling

requires the walker to crawl under a ceiling. In all the aforementioned scenarios, the walker fails when the

height of the walker is lower than a threshold.

Patrol (Forward and backward). The Patrol task involves walking forward and backward toward goal

points on either side and balancing in between to smoothly change its direction. As illustrated in Figure

8.4, our method consistently outperforms TRPO, PPO, and ablated baselines in stably walking forward and

transitioning to walk backward. The agent trained with dense rewards is not able to consistently switch

directions, whereas our model can utilize previously learned primitives including Balancing to stabilize a

reversal in velocity.

Hurdle (Walking forward and jumping). The Hurdle task requires the agent to walk forward and

jump across curbs, which requires a transition between walking and jumping as well as landing the jump

to walking forward. As shown in Figure 8.4, our method outperforms the sparse reward baselines, showing

the efficiency our proposed proximity reward. While TRPO with dense rewards can learn this task as well,

it requires dense rewards consisting of eight different components to collectively enable TRPO to learn the

255

task. It can be considered as learning both primitive skills and transition between skills from dense rewards.

However, the main focus of this paper is to learn a complex task by reusing acquired skills, avoiding an

extensive reward design.

Obstacle Course (Walking forward, jumping, and crawling). Obstacle Course is the most difficult

among the locomotion tasks, where the walker must walk forward, jump across curbs, and crawl underneath

ceilings. It requires three different behaviors and transitions between two very different primitive skills:

crawling and jumping. Since the task requires significantly different behaviors that are hard to transition

between, TRPO fails to learn the task and only tries to crawl toward the curb without attempting to jump.

In contrast, our method learns to transition between all pairs of primitive skills and often succeeds in

crossing multiple obstacles.

8.4.4 Ablation Study

We conducted additional experiments to understand the contribution of transition policies, proximity

predictors, and dense proximity rewards. The modular framework without transition policies (Without-TP)

tends to fail the execution of the second skill since the second skill is not trained to cover ending states of

the first skill. Especially, in continuous control making a primitive skill that can cover all possible states is

very challenging. Transition policies trained from task completion reward (TP-Task) and sparse proximity

reward (TP-Sparse) learn to connect consecutive primitives slower because sparse reward is hard to learn

from due to the credit assignment problem. On the other hand, our model alleviates the credit assignment

problem and learns quickly by giving predicted proximity reward for every transition state-action pair.

8.4.5 Training of Transition Policy and Proximity Predictor

To investigate how transition polices learn to solve the tasks, we present the lengths of transition trajectories

and the obtained proximity rewards during training in Figure 8.5. For manipulation, we show the results of

256

Serve
<latexit sha1_base64="dzB379CJXvTdqYnMhntrfjPmBZg=">AAAB+HicbZDLSsNAFIYn9VbrpVWXboJFcFUSKeiy4MZlRXuBNpTJ9KQdOpmEmZNiDX0SNy4UceujuPNtnLRZaOuBgY//P2fmzO/Hgmt0nG+rsLG5tb1T3C3t7R8clitHx20dJYpBi0UiUl2fahBcQgs5CujGCmjoC+j4k5vM70xBaR7JB5zF4IV0JHnAGUUjDSrlPsIjapbeg5rCvDSoVJ2asyh7HdwcqiSv5qDy1R9GLAlBIhNU657rxOilVCFnwlzYTzTElE3oCHoGJQ1Be+li8bl9bpShHUTKHIn2Qv09kdJQ61nom86Q4livepn4n9dLMLj2Ui7jBEGy5UNBImyM7CwFe8gVMBQzA5Qpbna12ZgqytBklYXgrn55HdqXNdfwXb3aqOdxFMkpOSMXxCVXpEFuSZO0CCMJeSav5M16sl6sd+tj2Vqw8pkT8qeszx/q2ZMx</latexit><latexit sha1_base64="dzB379CJXvTdqYnMhntrfjPmBZg=">AAAB+HicbZDLSsNAFIYn9VbrpVWXboJFcFUSKeiy4MZlRXuBNpTJ9KQdOpmEmZNiDX0SNy4UceujuPNtnLRZaOuBgY//P2fmzO/Hgmt0nG+rsLG5tb1T3C3t7R8clitHx20dJYpBi0UiUl2fahBcQgs5CujGCmjoC+j4k5vM70xBaR7JB5zF4IV0JHnAGUUjDSrlPsIjapbeg5rCvDSoVJ2asyh7HdwcqiSv5qDy1R9GLAlBIhNU657rxOilVCFnwlzYTzTElE3oCHoGJQ1Be+li8bl9bpShHUTKHIn2Qv09kdJQ61nom86Q4livepn4n9dLMLj2Ui7jBEGy5UNBImyM7CwFe8gVMBQzA5Qpbna12ZgqytBklYXgrn55HdqXNdfwXb3aqOdxFMkpOSMXxCVXpEFuSZO0CCMJeSav5M16sl6sd+tj2Vqw8pkT8qeszx/q2ZMx</latexit><latexit sha1_base64="dzB379CJXvTdqYnMhntrfjPmBZg=">AAAB+HicbZDLSsNAFIYn9VbrpVWXboJFcFUSKeiy4MZlRXuBNpTJ9KQdOpmEmZNiDX0SNy4UceujuPNtnLRZaOuBgY//P2fmzO/Hgmt0nG+rsLG5tb1T3C3t7R8clitHx20dJYpBi0UiUl2fahBcQgs5CujGCmjoC+j4k5vM70xBaR7JB5zF4IV0JHnAGUUjDSrlPsIjapbeg5rCvDSoVJ2asyh7HdwcqiSv5qDy1R9GLAlBIhNU657rxOilVCFnwlzYTzTElE3oCHoGJQ1Be+li8bl9bpShHUTKHIn2Qv09kdJQ61nom86Q4livepn4n9dLMLj2Ui7jBEGy5UNBImyM7CwFe8gVMBQzA5Qpbna12ZgqytBklYXgrn55HdqXNdfwXb3aqOdxFMkpOSMXxCVXpEFuSZO0CCMJeSav5M16sl6sd+tj2Vqw8pkT8qeszx/q2ZMx</latexit><latexit sha1_base64="dzB379CJXvTdqYnMhntrfjPmBZg=">AAAB+HicbZDLSsNAFIYn9VbrpVWXboJFcFUSKeiy4MZlRXuBNpTJ9KQdOpmEmZNiDX0SNy4UceujuPNtnLRZaOuBgY//P2fmzO/Hgmt0nG+rsLG5tb1T3C3t7R8clitHx20dJYpBi0UiUl2fahBcQgs5CujGCmjoC+j4k5vM70xBaR7JB5zF4IV0JHnAGUUjDSrlPsIjapbeg5rCvDSoVJ2asyh7HdwcqiSv5qDy1R9GLAlBIhNU657rxOilVCFnwlzYTzTElE3oCHoGJQ1Be+li8bl9bpShHUTKHIn2Qv09kdJQ61nom86Q4livepn4n9dLMLj2Ui7jBEGy5UNBImyM7CwFe8gVMBQzA5Qpbna12ZgqytBklYXgrn55HdqXNdfwXb3aqOdxFMkpOSMXxCVXpEFuSZO0CCMJeSav5M16sl6sd+tj2Vqw8pkT8qeszx/q2ZMx</latexit>

FINAL

(a) Manipulation

Patrol
<latexit sha1_base64="d1Oyunve2JK9EyNed/HVDZSnRoQ=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHosePFYwX5AG8pmu22XbnbD7qRYQv+JFw+KePWfePPfuGlz0NYXFh7emWFm3ygR3KDvfzuljc2t7Z3ybmVv/+DwyD0+aRmVasqaVAmlOxExTHDJmshRsE6iGYkjwdrR5C6vt6dMG67kI84SFsZkJPmQU4LW6rtuD9kTGpo1CGol5pW+W/Vr/kLeOgQFVKFQo+9+9QaKpjGTSAUxphv4CYYZ0cipYPNKLzUsIXRCRqxrUZKYmTBbXD73Lqwz8IZK2yfRW7i/JzISGzOLI9sZExyb1Vpu/lfrpji8DTMukxSZpMtFw1R4qLw8Bm/ANaMoZhYI1dze6tEx0YSiDSsPIVj98jq0rmqB5Yfrav26iKMMZ3AOlxDADdThHhrQBApTeIZXeHMy58V5dz6WrSWnmDmFP3I+fwC7dZOo</latexit><latexit sha1_base64="d1Oyunve2JK9EyNed/HVDZSnRoQ=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHosePFYwX5AG8pmu22XbnbD7qRYQv+JFw+KePWfePPfuGlz0NYXFh7emWFm3ygR3KDvfzuljc2t7Z3ybmVv/+DwyD0+aRmVasqaVAmlOxExTHDJmshRsE6iGYkjwdrR5C6vt6dMG67kI84SFsZkJPmQU4LW6rtuD9kTGpo1CGol5pW+W/Vr/kLeOgQFVKFQo+9+9QaKpjGTSAUxphv4CYYZ0cipYPNKLzUsIXRCRqxrUZKYmTBbXD73Lqwz8IZK2yfRW7i/JzISGzOLI9sZExyb1Vpu/lfrpji8DTMukxSZpMtFw1R4qLw8Bm/ANaMoZhYI1dze6tEx0YSiDSsPIVj98jq0rmqB5Yfrav26iKMMZ3AOlxDADdThHhrQBApTeIZXeHMy58V5dz6WrSWnmDmFP3I+fwC7dZOo</latexit><latexit sha1_base64="d1Oyunve2JK9EyNed/HVDZSnRoQ=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHosePFYwX5AG8pmu22XbnbD7qRYQv+JFw+KePWfePPfuGlz0NYXFh7emWFm3ygR3KDvfzuljc2t7Z3ybmVv/+DwyD0+aRmVasqaVAmlOxExTHDJmshRsE6iGYkjwdrR5C6vt6dMG67kI84SFsZkJPmQU4LW6rtuD9kTGpo1CGol5pW+W/Vr/kLeOgQFVKFQo+9+9QaKpjGTSAUxphv4CYYZ0cipYPNKLzUsIXRCRqxrUZKYmTBbXD73Lqwz8IZK2yfRW7i/JzISGzOLI9sZExyb1Vpu/lfrpji8DTMukxSZpMtFw1R4qLw8Bm/ANaMoZhYI1dze6tEx0YSiDSsPIVj98jq0rmqB5Yfrav26iKMMZ3AOlxDADdThHhrQBApTeIZXeHMy58V5dz6WrSWnmDmFP3I+fwC7dZOo</latexit><latexit sha1_base64="d1Oyunve2JK9EyNed/HVDZSnRoQ=">AAAB+XicbZBNS8NAEIYn9avWr6hHL8EieCqJCHosePFYwX5AG8pmu22XbnbD7qRYQv+JFw+KePWfePPfuGlz0NYXFh7emWFm3ygR3KDvfzuljc2t7Z3ybmVv/+DwyD0+aRmVasqaVAmlOxExTHDJmshRsE6iGYkjwdrR5C6vt6dMG67kI84SFsZkJPmQU4LW6rtuD9kTGpo1CGol5pW+W/Vr/kLeOgQFVKFQo+9+9QaKpjGTSAUxphv4CYYZ0cipYPNKLzUsIXRCRqxrUZKYmTBbXD73Lqwz8IZK2yfRW7i/JzISGzOLI9sZExyb1Vpu/lfrpji8DTMukxSZpMtFw1R4qLw8Bm/ANaMoZhYI1dze6tEx0YSiDSsPIVj98jq0rmqB5Yfrav26iKMMZ3AOlxDADdThHhrQBApTeIZXeHMy58V5dz6WrSWnmDmFP3I+fwC7dZOo</latexit>

FINAL

(b) Patrol

Figure 8.5: Average transition length and average proximity reward of transition trajectories over training
on Manipulation (left) and Patrol (right).

Repetitive picking up and Repetitive catching. For locomotion, we show Patrol with three different transition

policies.

The transition policy quickly learns to maximize the proximity reward regardless of the accuracy of

the proximity predictor. All the transition policies increase the length while exploring in the beginning,

especially for picking up (55 steps) and balance (45 steps). This is because a randomly initialized proximity

predictor outputs high proximity for unseen states and a transition policy tries to get a high reward by

visiting these states. However, as these failing initial states with high proximity are collected in the failure

buffers, the proximity predictor lowers their proximity and the transition policy learns to avoid them. In

other words, the transition policy will end up seeking successful states. As transition policies learn to

transition to the following skills, the length decreases to get higher proximity rewards earlier.

8.4.6 Visualizing Transition Trajectory

Figure 8.6(a) shows two transition trajectories (from s0 to t0 and s1 to t1) and two-dimensional PCA

embedding of the ending states (blue) and initiation states (red) of the Picking up primitive. A transition

policy starts from states s0 and s1 where the previous Picking up primitive is terminated. As can be seen

in Figure 8.6(a), the proximity predictor outputs small values for s0 and s1 since they are far from the

initiation set of Picking up primitive. Trajectories in the figure show that as the transition policy moves

257

High P(s)

Low P(s)

Picking end Picking start

Picking end
Picking start

s0

t0s1
t1

(a) Repetitive picking up

Forward

High P(s)

Low P(s)

Forward Balancing Backward

Balancing

Balancing Backward

s0
t0
s1

t1

(b) Patrol

Figure 8.6: Visualization of transition trajectories of (a) Repetitive picking up and (b) Patrol. Top and Bottom
rows: contain rendered frames of transition trajectories. Middle row: contains states extracted from each
primitive skill execution projected onto PCA space. The dots connected with lines are extracted from the
same transition trajectory, where the marker color indicates the proximity prediction P (s). A higher P (s)
value indicates proximity to states suitable for initializing the next primitive skill. Left: two picking up
transition trajectories demonstrate that the transition policy learns to navigate from terminate states s0
and s1 to t0 and t1. Right: the forward to balance transition moves between the forward and balance state
distributions and the balance to backward transition moves from the balancing states close to the backward
states.

toward states with higher proximity, and finally ends up with states t0 and t1 which are in the initiation set

of the primitive policy.

Figure 8.6(b) illustrates PCA embeddings of initiation sets of three primitive skills, Forward (green),

Backward (orange), and Balancing (blue). A transition from Forward to Balancing has very long trajectory,

but predicted proximity helps the transition policy to reach to an initiation state t0. On the other hand,

transitioning between Balancing and Backward only requires 7 steps.

258

8.5 Conclusion

In this work, we propose a modular framework with transition policies to empower reinforcement learning

agents to learn complex tasks with sparse reward by utilizing prior knowledge. Specifically, we formulate

the problem as executing existing primitive skills while smoothly transitioning between primitive skills.

To learn transition polices in a sparse reward setting, we propose a proximity predictor which generates

dense reward signals and jointly train transition policies and proximity predictors. Our experimental

results on robotic manipulation and locomotion tasks demonstrate the effectiveness of employing transition

policies. The proposed framework solves complex tasks without reward shaping and outperforms baseline

RL algorithms and other ablated baselines.

There are many future directions to investigate. Our method is designed to focus on acquiring transition

policies that connect a given set of primitive policies under the predefined meta-policy. We believe that joint

learning of a meta-policy and transition policies on a new task would make our framework more flexible.

Moreover, we made an assumption that a successful transition between two consecutive policies should be

achievable by random exploration. To alleviate the exploration problem with sparse rewards, our transition

policy training can incorporate exploration methods such as count-based exploration bonuses [27, 187] and

curiosity-driven intrinsic reward [224]. We also assume our primitive policies return a signal that indicates

whether the execution should be terminated or not, similar to Kulkarni et al. [148], Oh et al. [216], and

Le et al. [156]. Learning to assess the successful termination of primitive policies together with learning

transition policies is a promising future direction.

259

8.6 Appendix

8.6.1 Acquiring Primitive Policies

The modular framework proposed in this paper allows a primitive policy to be any of a pre-trained neural

network, inverse kinematics module, or hard-coded policy. In this paper, we use neural networks trained

with TRPO [264] on dedicated environments as primitive policies (see Section 8.6.3 for the details of

environments and reward functions). All policy networks we used consists of 2 layers of 32 hidden units

with tanh nonlinearities and predicts the mean and standard deviation of a Gaussian distribution over an

action space. We trained all primitive policies until the total return converged (up to 10,000 iterations).

Given a state, a primitive policy outputs an action as well as a termination signal indicating whether the

execution is done and if the skill was successfully performed (see Section 8.6.3 for details on primitive skills

and termination conditions).

8.6.2 Training Details

8.6.2.1 Implementation Details

For the TRPO and PPO implementation, we used OpenAI baselines [64] with default hyperparameters

including learning rate, KL penalty, and entropy coefficients unless specified below.

Hyperparameters Transition policy Proximity predictor Primitive policy TRPO PPO

Learning rate 1e-4 1e-4 1e-3 (for critic) 1e-3 (for critic) 1e-4

Mini-batch 150 150 32 150 150

Mini-batch size 64 64 64 64 64

Learning rate decay no no no no linear decay

Table 8.3: Hyperparameter values for transition policy, proximity predictor, and primitive policy as well as
TRPO and PPO baselines.

260

For all networks, we use the Adam optimizer with mini-batch size of 64. We use 4 workers for rollout

and parameter update. The size of rollout for each update is 10,000 steps. We limit the maximum length of

a transition trajectory as 100.

8.6.2.2 Replay Buffers

A success buffer BS contains states and their proximity to the corresponding initiation set in successful

transitions. On the other hand, a failure buffer BF contains states in failure transitions. Both the two buffers

are FIFO (i.e. new items are added on one end and once a buffer is full, a corresponding number of items are

discarded from the opposite end). For all experiments, we use buffers, BS and BF , with a capacity of one

million states.

For efficient training of the proximity predictors, we collect successful trajectories of primitive skills

which can be sampled during the training of primitive skills. We run 1,000 episodes for each primitive and

put the first 10 - 20% in trajectories into the success buffer as an initiation set. While initiation sets can

be discovered via random exploration, we found that this initialization of success buffers improves the

efficiency of training by providing initial training data for the proximity predictors.

8.6.2.3 Proximity Reward

Transition policies receive rewards based on the outputs of proximity predictors. Before computing the

reward at every time step, we clip the output of the proximity predictorP by clip(P (s), 0, 1)which indicates

how close the state s is to the initiation set of the following primitive (higher values correspond to closer

states). We define the proximity of a state to an initiation set as an exponentially discounted function

δstep, where step is the shortest number of timesteps required to get to a state in the initiation set. We use

δ = 0.95 for all experiments. To make the reward denser, for every timestep t, we provide the increase in

proximity, P (st+1)− P (st), as a reward for transition policy.

261

0 200 400 600 800 1000
Step

0.0

0.5

1.0

1.5

2.0

2.5
Su

cc
es

s
Ours-Exponential
Ours-Linear

(a) Obstacle course

0 100 200 300 400 500
Step

0

1

2

3

4

Su
cc

es
s

(b) Repetitive catching

Figure 8.7: Success count curves of our model with exponentially discounted proximity function and linearly
discounted proximity function over training on Obstacle course (left) and Repetitive catching (right).

Using a linearly discounted proximity function, 1− δ · step, is also a valid choice. We compare the two

proximity functions on a manipulation task (Repetitive catching) and a locomotion task (Obstacle course), as

shown in Figure 8.7, where δ for exponential decay and linear decay are 0.95 and 0.01, respectively. The

results demonstrate that our model is able to learn well with both proximity functions and they perform

similarly.

Originally, we opted for the exponential proximity function with the intuition that the faster initial

decay near the initiation set would help the policy discriminate successful states from failing states near the

initiation set. Also, in our experiments, as we use 0.95 as a decaying factor, the proximity is still reasonably

large (e.g., 0.35 for 20 time-steps and 0.07 for 50 time-steps). In this paper, we use the exponential proximity

function for all experiments.

8.6.2.4 Proximity Predictor

A proximity predictor takes a state as input which includes joint state information, joint acceleration,

and any task specification, such as ceiling and curb information. A proximity predictor consists of 2 fully

connected layers of 96 hidden units with ReLU nonlinearities and predicts the proximity to the initiation

262

set based on the states sampled from the success and failure buffers. Each training iteration consists of 10

epochs over a batch size of 64 and use a learning rate of 10−4. The predictor optimizes the loss in Equation

(8.1), similar to the LSGAN loss [186].

8.6.2.5 Transition Policies

An observation space of a transition policy consists of joint state information and joint acceleration. A

transition policy consists of 2 fully connected layers of 32 hidden units with tanh nonlinearities and predicts

the mean and standard deviation of a Gaussian distribution over an action space. A 2-way softmax layer is

followed by the last fully connected layer to predict whether to terminate the current transition or not. We

train all transition policies using PPO [265] since PPO is robust on smaller batch sizes and the transition

states collected for each update is much smaller than the size of a rollout. Each training iteration consists

of 5 epochs over a batch.

Algorithm 4 Train
1: Input: Primitive polices {πp1 , ..., πpn}.

2: Initialize success buffers {BS1, ..., BSn} with successful trajectories of primitive policies.

3: Initialize failure buffers {BF1, ..., BFn}.

4: Randomly initialize parameters of transition policies {ϕ1, ..., ϕn} and proximity predictors

{ω1, ..., ωn}.

5: repeat

6: Initialize rollout buffers {R1, ...,Rn}.

7: Collect trajectories using Rollout.

8: for i = 1 to n do

9: Update Pωi to minimize Equation (8.1) using BSi and BFi .

10: Update πϕi
to maximize Equation (8.2) usingRi.

11: end for

12: until convergence

263

Algorithm 5 Rollout
1: Input: Meta policy πmeta, primitive policies {πp1 , ..., πpn}, transition policies {πϕ1 , ..., πϕn},

and proximity predictors {Pω1 , ..., Pωn}.

2: Initialize an episode and receive initial state s0.

3: t← 0

4: while episode is not terminated do

5: c ∼ πmeta(st)

6: Initialize a rollout buffer B.

7: while episode is not terminated do

8: at, τtrans ∼ πϕc(st)

9: Terminate the transition policy if τtrans = terminate.

10: st+1, τenv ← ENV(st, at)

11: rt ← Pωc(st+1)− Pωc(st)

12: Store (st, at, rt, τenv, st+1) in B

13: t← t+ 1

14: end while

15: while episode is not terminated do

16: at, τpc ∼ πpc(st)

17: Terminate the primitive policy if τpc ̸= continue.

18: st+1, τenv ← ENV(st, at)

19: t← t+ 1

20: end while

21: Compute the discounted proximity v of each state s in B.

22: Add pairs of (s, v) to BSc or BFc according to τpc .

23: Add B to the rollout bufferRc.

24: end while

264

8.6.2.6 Scalability

Each sub-policy requires its corresponding transition policy, proximity predictor, and two buffers. Hence,

both the time and memory complexities of our method are linearly dependent on the number of sub-policies.

The memory overhead is affordable since a transition policy (2 layers of 32 hidden units), a proximity

predictor (2 layers of 96 hidden units), and replay buffers (1M states) are small.

8.6.3 Environment Descriptions

For every task, we add a control penalty, −0.001 ∗ ∥a∥2, to regularize the magnitude of actions where a is

a torque action performed by an agent. Note that all measures are in meters, and we omit the measures

here for clarity of the presentation.

8.6.3.1 Robotic Manipulation

In object manipulation tasks, a 9-DOF Jaco robotic arm∗ is used as an agent and a cube with the side length

0.06 m is used as a target object. We follow the tasks and environment settings proposed in Ghosh et al.

[91]. The observation consists of the position of the base of the Jaco arm, joint angles, angular velocities

as well as the position, rotation, velocity, and angular velocity of the cube. The action space is a torque

control on 9 joints.

Reward Design and Termination Condition

Picking up: In the Picking up task, the position of the box is randomly initialized within a square

region of size 0.1 m × 0.1 m with a center (0.5, 0.2). There is an initial guide reward to guide the arm to the

box. There is also an over reward to guide the hand directly over the box. When the arm is not picking up

the box, there is a pick reward to incentivize the arm to pick the box up. There is an additional hold reward

that makes the arm hold the box in place after picking up. Finally, there is a success reward given after the
∗http://www.mujoco.org/forum/index.php?resources/kinova-arms.12/

265

http://www.mujoco.org/forum/index.php?resources/kinova-arms.12/

arm has held the box for 50 frames. The success reward is scaled with number of timesteps to encourage

the arm to succeed as quickly as possible.

R(s) = λguide ·1Box not picked and Box on ground+λpick ·1Box in hand and not picked+λhold ·1Box picked and near hold point

λguide = 2, λpick = 100, λhold = 0.1

Catching: The position of the box is initialized at (0, 2.0, 1.5) and the directional force of size 110 is

applied to throw the box toward the agent with randomness (0.1 m × 0.1 m).

R(s) = 1Box in air and Box within 0.06 of Jaco end-effector

Tossing: The box is randomly initialized on the ground at (0.4, 0.3, 0.05) within a 0.005× 0.005 square

region. A guide reward is given to guide the arm to the top of the box. A pick reward is then given to lift

the box up to a specified release height. A release reward is given if the box is no longer in the hand. A

stable reward is given to minimize variation in the box’s x and y direction. An up reward is given while the

ball is traveling upwards in air, up until the box hits a specified z height. Finally, a success reward +100 is

given based on the landing position of the box and the specified landing position.

Hitting: The box is randomly initialized overhead the arm at (0.4, 0.3, 1.2) within a 0.005 × 0.005 m

square region. The box falls and the arm is given a hit reward +10 for hitting the box. Once the box has

been hit, a target reward is given based on how close the box is to the target.

Repetitive picking up: The Repetitive picking up task has two reward variants. The sparse version

gives a reward +1 for every successful pick. The dense reward version gives a guide reward to the box after

each successful pick following the reward for the Picking up task.

266

Repetitive catching: The Repetitive catching task gives a reward +1 for every successful catch. For

dense reward, it uses the same reward function with that of the Catching task.

Serve: The Serve task gives a toss reward +1 for a successful toss and a target reward +1 for successfully

hitting the target. The dense reward setting provides the Tossing and Hitting reward according to box

position.

8.6.3.2 Locomotion

A 9-DOF bipedal planar walker is used for simulating locomotion tasks. The observation consists of the

position and velocity of the torso, joint angles, and angular velocities. The action space is torque control on

the 6 joints.

Reward Design Different locomotion tasks share many components of reward design, such as velocity,

stability, and posture. We use the same form of reward functions, but with different hyperparameters for

each task. The basic form of the reward function is as following:

R(s) =λvel · abs(vx − vtarget) + λalive − λheight · abs(1.1−min(1.1,∆h))+

λangle · cos(angle)− λfoot(vright_foot + vleft_foot),

where vx, vright_foot, and vleft_foot are forward velocity, right foot angular velocity, left foot angular

velocity; and ∆h and angle are the distance between the foot and torso and the angle of the torso,

respectively. The foot velocities help the agent to move its feet naturally. ∆h and angle are used to

maintain height of the torso and encourage an upright pose.

Forward: The Forward task requires the walker agent to walk forward for 20 meters. To make the

agent robust, we apply a random force with arbitrary magnitude and direction to a randomly selected joint

every 10 timesteps.

267

λvel = 2, λalive = 1, λheight = 2, λangle = 0.1, λfoot = 0.01, and vtarget = 3

Backward: Similar to Forward, the Backward task requires the walker to walk backward for 20 meters

under random forces.

λvel = 2, λalive = 1, λheight = 2, λangle = 0.1, λfoot = 0.01, and vtarget = −3

Balancing: In the Balancing task, the agent learns to balance under strong random forces for 1000

timesteps. Similar to other tasks, the random forces are applied to a random joint every 10 timesteps, but

with magnitude 5 times larger.

λvel = 1, λalive = 1, λheight = 0.5, λangle = 0.1, λfoot = 0, and vtarget = 0

Crawling: In the Crawling task, a ceiling of height 1.0 and length 16 is located in front of the agent,

and the agent is required to crawl under the ceiling without touching it. If the agent touches the ceiling, we

terminate the episode. The task can be completed when the agent passes a point 1.5 after the ceiling and

the agent gets 100 additional reward.

λvel = 2, λalive = 1, λheight = 0, λangle = 0.1, λfoot = 0.01, and vtarget = 3

Jumping: In the Jumping task, a curb of height 0.4 and length 0.2 is located in front of the walker

agent. The observation contains a distance to the curb in addition to the 17-dimensional joint information,

where the distance is clipped by 3. The x location of the curb is randomly chosen from [2.5, 5.5]. In addition

to the reward function above, it also gets an additional 100 reward for passing the curb and 200 · vy when

268

the agent passes the front, middle, and end slices of the curb, where vy is y-velocity. If the agent touches

the curb, the agent gets -10 penalty and the episode is terminated.

λvel = 2, λalive = 1, λheight = 2, λangle = 0.1, λfoot = 0.01, and vtarget = 3

Patrol: The Patrol task is repetitive running forward and backward between two goals at x = −2

and x = 2. Once the agent touches a goal, the target is changed to another goal and the sparse reward +1 is

given. The dense reward alternates between the reward functions of Forward and Backward. The agent

gets the reward of Forward when the agent is heading toward x = 2 and gets the reward of Backward,

otherwise.

Hurdle: TheHurdle environment consists of 5 curbs positioned at x = {8, 18, 28, 38, 48} and requires

repetitive walking and jumping behaviors. The position of each curb is randomized with a uniformly

sampled value from [−0.5, 0.5]. The sparse reward +1 is given when the agent jumps over a curb (i.e. pass

a point 1.5 after a curb).

The dense reward for Hurdle is same with Jumping and has 8 reward components to guide the agent to

learn the desired behavior. By extensively designing dense rewards, it is possible to solve complex tasks.

In comparison, our proposed method learns from sparse reward by re-using prior knowledge and doesn’t

require reward shaping.

Obstacle Course: The Obstacle Course environment replaces two curbs in Hurdle with a ceiling of

height 1.0 and length 3. The sparse reward +1 is given when the agent jumps over a curb or passes through

a ceiling (i.e. pass a point 1.5 after a curb or a ceiling). The dense reward is alternating between Jumping

before the curb and Crawling before the ceiling.

Termination Signal Locomotion tasks except Crawling fail if h < 0.8 and Crawling fails if h < 0.3.

Forward and Backward tasks are considered as success when the walker reaches to the target or 5 in front

269

of obstacles. Balancing task is considered successful when the agent does not fail for 50 timesteps. The

agent succeeds on Jumping and Crawling if the agent passes the obstacles by a distance of 1.5.

270

Part V

Conclusion

271

Chapter 9

Conclusion

9.1 Summary

This dissertation describes a robot learning framework that is designed to allow robots to interpret and

acquire complex skills. The key insight is to represent a skill or a task-solving procedure using programs

that are structured in a formal domain-specific language (DSL). Specifically, Part II describes techniques that

can infer programs from expert’s demonstrations (Chapter 2) and reward functions (Chapter 3). Then, Part

III introduces two lines of work that aim to efficiently acquire a set of primitive skills: meta-reinforcement

learning (Chapter 4 and Chapter 5) and learning from demonstrations (Chapter 6). Finally, Part IV presents

how robots can learn to execute inferred programs (Chapter 7) and hierarchically compose a set of acquired

primitive skills (Chapter 8). The novelty, feasibility, and potential impact of this proposed framework have

been justified by a series of publications presented at top-tier computer science and machine learning

conferences.

9.2 Future Directions

To further improve the proposed robot learning framework, I plan to continue researching in the following

directions.

272

9.2.1 Program Inference

This dissertation introduces methods that are designed to infer programs for mimicking expert’s behaviors

and for addressing reinforcement learning tasks. To develop more practical program inference frameworks,

I plan to conduct research in the following directions.

Synthesizing programs from real-world videos. I aim to further leverage my experience in computer

vision [121, 285, 286] to devise a more general program synthesis framework for synthesizing programs from

more complex task specifications. This includes directions such as incorporating the scene understanding

ability of computer vision models trained on large-scale datasets [58, 109, 147, 214], exploiting multimodal

demonstrations (e.g. cooking instructional videos) that contain audio, captions or subtitles, manuals, etc.

Leveraging language models for program synthesis. Language models trained on large-scale datasets

have achieved tremendous success in a wide range of natural language processing tasks [30, 62, 153, 339]. I

believe developing and leveraging language models can significantly increase the scalability of program

synthesis methods. Recently, encouraging results have been shown in leveraging language models for

program synthesis in competitive programming [18, 44, 167]. In contrast, I aim to develop and leverage

language models for programs that describe behaviors for agent learning.

Learning programmatic priors. The program inference works described in this dissertation rely on

learning from randomly generated programs. Yet, it would be more effective to learn from goal-oriented

behavioral programs, which allows for extracting meaningful programmatic behavioral priors.

Developing differentiable program executors. Existing program synthesis methods assume the avail-

ability of program executors that can execute program to produce execution results. In most cases, such a

execution process is not differentiable, and therefore cannot be utilized as direct supervision (i.e. gradients)

for learning. Developing differentiable program executors would allow learning models to be optimized

based on execution results, which yield more accurate and direct supervision.

273

Building programmatic multi-agent learning systems. This dissertation shows encouraging results in

single agent environment. I believe the advantage of the proposed framework, such as interpretability and

generalization ability, can apply to multi-agent robot learning systems.

Programming from negative examples. Existing programming from examples methods [35, 46, 47,

63, 273, 287] are designed to learn from "positive" examples that demonstration inputs and outputs based

on correct program execution. It would be interesting to explore how "negative" examples, that contain

incorrect program execution results, can play a role in learning program inference.

9.2.2 Primitive Skill Acquisition

To efficiently acquire a set of primitive skills, this dissertation introduces meta-learning and learning

from demonstration methods. I plan to continue research in meta-learning and directions that exploit the

relationship among skills to further improve the learning efficiency.

9.2.3 Task Execution

The techniques proposed in this dissertation are mainly evaluated in simulated environments. Yet, to justify

and improve the effectiveness of applying these techniques to real robots, I plan to work on the following

directions.

Deploying proposed algorithms to real robots. I aim to investigate the advantage and the limitations

of applying the proposed framework to real robot learning systems. Specifically, I plan to explore robot

manipulation tasks such as object rearrangement and furniture assembly.

Researching sim-to-real techniques. I plan to research sim-to-real techniques [41, 126, 189, 227] that

can translate the success achieved in simulation to real-world.

274

Bibliography

[1] Martın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. “TensorFlow: A System for
Large-Scale Machine Learning”. In: USENIX Symposium on Operating Systems Design and
Implementation. 2016.

[2] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforcement learning”. In:
International Conference on Machine Learning. 2004.

[3] Daniel A Abolafia, Mohammad Norouzi, Jonathan Shen, Rui Zhao, and Quoc V Le. “Neural program
synthesis with priority queue training”. In: arXiv preprint arXiv:1801.03526 (2018).

[4] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. “OPAL: Offline
Primitive Discovery for Accelerating Offline Reinforcement Learning”. In: International Conference
on Learning Representations. 2021.

[5] Ferran Alet, Javier Lopez-Contreras, James Koppel, Maxwell Nye, Armando Solar-Lezama,
Tomas Lozano-Perez, Leslie Kaelbling, and Joshua Tenenbaum. “A large-scale benchmark for
few-shot program induction and synthesis”. In: International Conference on Machine Learning. 2021.

[6] Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bachman, and Aaron Courville.
“Augmented cyclegan: Learning many-to-many mappings from unpaired data”. In: International
Conference on Machine Learning. 2018.

[7] Uri Alon, Omer Levy, and Eran Yahav. “code2seq: Generating sequences from structured
representations of code”. In: International Conference on Learning Representations. 2019.

[8] David Andre and Stuart J Russell. “Programmable reinforcement learning agents”. In: Neural
Information Processing Systems. 2001.

[9] David Andre and Stuart J Russell. “State abstraction for programmable reinforcement learning
agents”. In: National Conference on Artificial Intelligence. 2002.

[10] Jacob Andreas, Dan Klein, and Sergey Levine. “Learning with latent language”. In: North American
Chapter of the Association for Computational Linguistics. 2017.

275

[11] Jacob Andreas, Dan Klein, and Sergey Levine. “Modular multitask reinforcement learning with
policy sketches”. In: International Conference on Machine Learning. 2017.

[12] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. “Neural module networks”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2016.

[13] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. “Learning to learn by gradient descent by gradient
descent”. In: Neural Information Processing Systems. 2016.

[14] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. “Hindsight experience replay”. In:
Neural Information Processing Systems. 2017.

[15] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. “Learning
Dexterous In-Hand Manipulation”. In: The International Journal of Robotics Research (2020).

[16] Daniel Angelov, Yordan Hristov, Michael Burke, and Subramanian Ramamoorthy. “Composing
Diverse Policies for Temporally Extended Tasks”. In: IEEE Robotics and Automation Letters (2020).

[17] Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and Claire Tomlin. “Provably safe and robust
learning-based model predictive control”. In: Automatica (2013).

[18] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. “Program Synthesis with Large Language
Models”. In: arXiv preprint arXiv:2108.07732 (2021).

[19] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas. “Playing
hard exploration games by watching YouTube”. In: Neural Information Processing Systems. 2018.

[20] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The Option-Critic Architecture.” In: AAAI
Conference on Artificial Intelligence. 2017.

[21] Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Pushmeet Kohli, and
Edward Grefenstette. “Learning to Understand Goal Specifications by Modelling Reward”. In:
International Conference on Learning Representations. 2019.

[22] Mihalj Bakator and Dragica Radosav. “Deep learning and medical diagnosis: A review of literature”.
In: Multimodal Technologies and Interaction (2018).

[23] Bram Bakker, Jürgen Schmidhuber, et al. “Hierarchical reinforcement learning based on subgoal
discovery and subpolicy specialization”. In: Intelligent Autonomous Systems. 2004.

[24] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
“Deepcoder: Learning to write programs”. In: International Conference on Learning Representations.
2017.

276

[25] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. “Verifiable reinforcement learning via
policy extraction”. In: Neural Information Processing Systems. 2018.

[26] Harold Bekkering, Andreas Wohlschlager, and Merideth Gattis. “Imitation of gestures in children is
goal-directed”. In: The Quarterly Journal of Experimental Psychology: Section A (2000).

[27] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
“Unifying count-based exploration and intrinsic motivation”. In: Neural Information Processing
Systems. 2016.

[28] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the Optimization of a Synaptic
Learning Rule. 1997.

[29] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. “Safe Model-Based
Reinforcement Learning with Stability Guarantees”. In: Neural Information Processing Systems. 2017.

[30] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. “On the
opportunities and risks of foundation models”. In: arXiv preprint arXiv:2108.07258 (2021).

[31] Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. “Programming with a
Differentiable Forth Interpreter”. In: International Conference on Machine Learning. 2017.

[32] Satchuthananthavale RK Branavan, Harr Chen, Luke S Zettlemoyer, and Regina Barzilay.
“Reinforcement learning for mapping instructions to actions”. In: Assosiation of Computational
Linguistics. 2009.

[33] SRK Branavan, Nate Kushman, Tao Lei, and Regina Barzilay. “Learning high-level planning from
text”. In: Assosiation of Computational Linguistics. 2012.

[34] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. “Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations”. In: International
Conference on Machine Learning. 2019.

[35] Rudy R Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
“Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis”. In: International
Conference on Learning Representations. 2018.

[36] Michael Burke, Katie Lu, Daniel Angelov, Artūras Straižys, Craig Innes, Kartic Subr, and
Subramanian Ramamoorthy. “Learning robotic ultrasound scanning using probabilistic temporal
ranking”. In: arXiv preprint arXiv:2002.01240 (2020).

[37] Michael Burke, Svetlin Penkov, and Subramanian Ramamoorthy. “From explanation to synthesis:
Compositional program induction for learning from demonstration”. In: arXiv preprint
arXiv:1902.10657 (2019).

[38] Jonathon Cai, Richard Shin, and Dawn Song. “Making neural programming architectures generalize
via recursion”. In: International Conference on Learning Representations. 2017.

277

[39] Alexandre Campeau-Lecours, Hugo Lamontagne, Simon Latour, Philippe Fauteux,
Véronique Maheu, François Boucher, Charles Deguire, and Louis-Joseph Caron L’Ecuyer. “Kinova
modular robot arms for service robotics applications”. In: Rapid Automation: Concepts,
Methodologies, Tools, and Applications. 2019.

[40] Chia-Jung Chang, Wei Guo, Jie Zhang, Jon Newman, Shao-Hua Sun, and Matt Wilson. “Behavioral
clusters revealed by end-to-end decoding from microendoscopic imaging”. In: bioRxiv (2021).

[41] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff, and
Dieter Fox. “Closing the sim-to-real loop: Adapting simulation randomization with real world
experience”. In: IEEE International Conference on Robotics and Automation. 2019.

[42] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. “Actionable Models: Unsupervised Offline
Reinforcement Learning of Robotic Skills”. In: arXiv preprint arXiv:2104.07749 (2021).

[43] Liushan Chen, Yu Pei, and Carlo A Furia. “Contract-based program repair without the contracts”.
In: International Conference on Automated Software Engineering. 2017.

[44] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan,
Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. “Evaluating large language
models trained on code”. In: arXiv preprint arXiv:2107.03374 (2021).

[45] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. “A Closer
Look at Few-shot Classification”. In: International Conference on Learning Representations. 2019.

[46] Xinyun Chen, Chang Liu, and Dawn Song. “Execution-Guided Neural Program Synthesis”. In:
International Conference on Learning Representations. 2019.

[47] Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, and
Denny Zhou. “SpreadsheetCoder: Formula Prediction from Semi-structured Context”. In:
International Conference on Machine Learning. 2021.

[48] Xinyun Chen, Dawn Song, and Yuandong Tian. “Latent Execution for Neural Program Synthesis
Beyond Domain-Specific Languages”. In: arXiv preprint arXiv:2107.00101 (2021).

[49] Yun-Chun Chen, Chao-Te Chou, and Yu-Chiang Frank Wang. “Learning to Learn in a
Semi-supervised Fashion”. In: European Conference on Computer Vision. 2020.

[50] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic Gridworld Environment for
OpenAI Gym. https://github.com/maximecb/gym-minigrid. 2018.

[51] Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra Faust. “RL-RRT:
Kinodynamic motion planning via learning reachability estimators from RL policies”. In: IEEE
Robotics and Automation Letters (2019).

[52] Dongkyu Choi and Pat Langley. “Learning teleoreactive logic programs from problem solving”. In:
International Conference on Inductive Logic Programming. 2005.

278

https://github.com/maximecb/gym-minigrid

[53] Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. “Learning to Adapt in Dynamic, Real-World Environments through
Meta-Reinforcement Learning”. In: International Conference on Learning Representations. 2019.

[54] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
“Model-Based Reinforcement Learning via Meta-Policy Optimization”. In: Conference on Robot
Learning. 2018.

[55] Raphaël Dang-Nhu. “PLANS: Neuro-Symbolic Program Learning from Videos”. In: Neural
Information Processing Systems. 2020.

[56] Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. “Probabilistic inference for
determining options in reinforcement learning”. In: Machine Learning (2016).

[57] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. “RoboNet: Large-scale multi-robot learning”. In:
Conference on Robot Learning. 2019.

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A large-scale
hierarchical image database”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2009.

[59] Misha Denil, Sergio Gómez Colmenarejo, Serkan Cabi, David Saxton, and Nando de Freitas.
“Programmable agents”. In: arXiv preprint arXiv:1706.06383 (2017).

[60] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron,
Subhajit Roy, et al. “Program synthesis using natural language”. In: International Conference on
Software Engineering. 2016.

[61] Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. “Neural
Program Meta-Induction”. In: Neural Information Processing Systems. 2017.

[62] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-training of deep
bidirectional transformers for language understanding”. In: North American Chapter of the
Association for Computational Linguistics. 2018.

[63] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. “Robustfill: Neural program learning under noisy I/O”. In: International Conference
on Machine Learning. 2017.

[64] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. OpenAI Baselines. 2017.

[65] Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov.
“Gated-attention readers for text comprehension”. In: Assosiation of Computational Linguistics. 2017.

[66] Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, and Murray Shanahan. “Feature Control as
Intrinsic Motivation for Hierarchical Reinforcement Learning”. In: arXiv preprint arXiv:1705.06769
(2017).

279

[67] Yiming Ding, Carlos Florensa, Mariano Phielipp, and Pieter Abbeel. “Goal-conditioned imitation
learning”. In: Neural Information Processing Systems. 2019.

[68] Ron Dorfman, Idan Shenfeld, and Aviv Tamar. “Offline Meta Learning of Exploration”. In: Neural
Information Processing Systems. 2021.

[69] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider,
Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. “One-shot imitation learning”. In: Neural
Information Processing Systems. 2017.

[70] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. “RL 2: Fast
Reinforcement Learning via Slow Reinforcement Learning”. In: arXiv preprint arXiv:1611.02779
(2016).

[71] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. “A learned representation for artistic
style”. In: International Conference on Learning Representations. 2017.

[72] Thomas Durieux and Martin Monperrus. “Dynamoth: dynamic code synthesis for automatic
program repair”. In: International Workshop on Automation of Software Test. 2016.

[73] Ashley D. Edwards and Charles L. Isbell. “Perceptual Values from Observation”. In: arXiv preprint
arXiv:1905.07861 (2019).

[74] Ashley D. Edwards, Charles L. Isbell, and Atsuo Takanishi. “Perceptual reward functions”. In: arXiv
preprint arXiv:1608.03824 (2016).

[75] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
“Write, execute, assess: Program synthesis with a repl”. In: Neural Information Processing Systems.
2019.

[76] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales,
Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. “Dreamcoder: Growing
generalizable, interpretable knowledge with wake-sleep bayesian program learning”. In: arXiv
preprint arXiv:2006.08381 (2020).

[77] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks”. In: International Conference on Machine Learning. 2017.

[78] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. “A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models”. In: Adversarial
Training Workshop on Neural Information Processing Systems (2016).

[79] Chelsea Finn and Sergey Levine. “Meta-Learning and Universality: Deep Representations and
Gradient Descent can Approximate any Learning Algorithm”. In: International Conference on
Learning Representations. 2018.

[80] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. “Deep
spatial autoencoders for visuomotor learning”. In: IEEE International Conference on Robotics and
Automation. 2016.

280

[81] Chelsea Finn, Kelvin Xu, and Sergey Levine. “Probabilistic Model-Agnostic Meta-Learning”. In:
Neural Information Processing Systems. 2018.

[82] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. “One-shot visual
imitation learning via meta-learning”. In: Conference on Robot Learning. 2017.

[83] Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. “A general safety framework for learning-based control in uncertain robotic
systems”. In: IEEE Transactions on Automatic Control (2018).

[84] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. “Meta Learning Shared
Hierarchies”. In: International Conference on Learning Representations. 2018.

[85] Daniel Fried, Jacob Andreas, and Dan Klein. “Unified Pragmatic Models for Generating and
Following Instructions”. In: North American Chapter of the Association for Computational Linguistics.
2017.

[86] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. “Speaker-Follower Models for
Vision-and-Language Navigation”. In: Neural Information Processing Systems. 2018.

[87] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. “D4rl: Datasets for deep
data-driven reinforcement learning”. In: arXiv preprint arXiv:2004.07219 (2020).

[88] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Adverserial Inverse
Reinforcement Learning”. In: International Conference on Learning Representations. 2018.

[89] Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. “Differentiable
Programs with Neural Libraries”. In: International Conference on Machine Learning. 2017.

[90] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice. Elsevier,
2004.

[91] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. “Divide and
Conquer Reinforcement Learning”. In: International Conference on Learning Representations. 2018.

[92] Biraja Ghoshal and Allan Tucker. “Estimating uncertainty and interpretability in deep learning for
coronavirus (COVID-19) detection”. In: arXiv preprint arXiv:2003.10769 (2020).

[93] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. “Automated program repair”. In:
Communications of the ACM (2019).

[94] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. “Recasting
Gradient-Based Meta-Learning as Hierarchical Bayes”. In: International Conference on Learning
Representations. 2018.

[95] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural turing machines”. In: arXiv preprint
arXiv:1410.5401 (2014).

281

[96] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho,
John Agapiou, et al. “Hybrid computing using a neural network with dynamic external memory”.
In: Nature (2016).

[97] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. “Learning to
transduce with unbounded memory”. In: Neural Information Processing Systems. 2015.

[98] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. “Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates”. In: IEEE International Conference on
Robotics and Automation. 2017.

[99] Aditya Gudimella, Ross Story, Matineh Shaker, Ruofan Kong, Matthew Brown, Victor Shnayder,
and Marcos Campos. “Deep Reinforcement Learning for Dexterous Manipulation with Concept
Networks”. In: arXiv preprint arXiv: 1709.06977 (2017).

[100] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. “RL
Unplugged: Benchmarks for Offline Reinforcement Learning”. In: arXiv preprint arXiv:2006.13888
(2020).

[101] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. “Relay Policy
Learning: Solving Long-Horizon Tasks via Imitation and Reinforcement Learning”. In: Conference
on Robot Learning. 2019.

[102] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
“Meta-Reinforcement Learning of Structured Exploration Strategies”. In: Neural Information
Processing Systems. 2018.

[103] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. “Deepfix: Fixing common c language
errors by deep learning”. In: AAAI Conference on Artificial Intelligence. 2017.

[104] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor”. In: International
Conference on Machine Learning. 2018.

[105] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. “Dream to Control:
Learning Behaviors by Latent Imagination”. In: International Conference on Learning
Representations. 2020.

[106] A. Hakobyan, G. C. Kim, and I. Yang. “Risk-Aware Motion Planning and Control Using
CVaR-Constrained Optimization”. In: IEEE Robotics and Automation Letters (2019).

[107] Chi Han, Jiayuan Mao, Chuang Gan, Josh Tenenbaum, and Jiajun Wu. “Visual
Concept-Metaconcept Learning”. In: Neural Information Processing Systems. 2019.

[108] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
“Learning an Embedding Space for Transferable Robot Skills”. In: International Conference on
Learning Representations. 2018.

282

[109] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn”. In: International
Conference on Computer Vision. 2017.

[110] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image
recognition”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2016.

[111] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and David Silver. “Emergence of
Locomotion Behaviours in Rich Environments”. In: arXiv preprint arXiv: 1707.02286 (2017).

[112] Lukas Hewing, Juraj Kabzan, and Melanie N. Zeilinger. “Cautious Model Predictive Control Using
Gaussian Process Regression”. In: IEEE Transactions on Control System Technology (2019).

[113] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. “beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework”. In: International Conference on Learning Representations. 2017.

[114] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In: Neural
Information Processing Systems. 2016.

[115] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural Computation
(1997).

[116] Nicola J Hodges, A Mark Williams, Spencer J Hayes, and Gavin Breslin. “What is modelled during
observational learning?” In: Journal of sports sciences (2007).

[117] Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, and Manzil Zaheer. “Latent Programmer:
Discrete Latent Codes for Program Synthesis”. In: International Conference on Machine Learning.
2021.

[118] Hexiang Hu, Liyu Chen, Boqing Gong, and Fei Sha. “Synthesized Policies for Transfer and
Adaptation across Tasks and Environments”. In: Neural Information Processing Systems. 2018.

[119] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2018.

[120] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. “Neural task graphs: Generalizing to unseen tasks from a single video
demonstration”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[121] Minyoung Huh, Shao-Hua Sun, and Ning Zhang. “Feedback Adversarial Learning: Spatial Feedback
for Improving Generative Adversarial Networks”. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019.

[122] Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. “Meta reinforcement learning as task inference”. In: arXiv preprint arXiv:1905.06424
(2019).

283

[123] Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. “Synthesizing
Programmatic Policies that Inductively Generalize”. In: International Conference on Learning
Representations. 2020.

[124] Ayush Jain, Andrew Szot, and Joseph J. Lim. “Generalization to new actions in reinforcement
learning”. In: International Conference on Machine Learning. 2020.

[125] Stephen James, Andrew J Davison, and Edward Johns. “Transferring End-to-End Visuomotor
Control from Simulation to Real World for a Multi-Stage Task”. In: Conference on Robot Learning.
2017.

[126] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. “Sim-to-real via sim-to-sim:
Data-efficient robotic grasping via randomized-to-canonical adaptation networks”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019.

[127] Michael Janner, Karthik Narasimhan, and Regina Barzilay. “Representation learning for grounded
spatial reasoning”. In: Assosiation of Computational Linguistics. 2018.

[128] Jermsak Jermsurawong and Nizar Habash. “Predicting the Structure of Cooking Recipes”. In:
Empirical Methods in Natural Language Processing. 2015.

[129] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. “Shaping program
repair space with existing patches and similar code”. In: ACM SIGSOFT International Symposium on
Software Testing and Analysis. 2018.

[130] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[131] Armand Joulin and Tomas Mikolov. “Inferring algorithmic patterns with stack-augmented
recurrent nets”. In: Neural Information Processing Systems. 2015.

[132] Łukasz Kaiser and Ilya Sutskever. “Neural gpus learn algorithms”. In: International Conference on
Learning Representations. 2016.

[133] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine.
“Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation”. In: Conference on
Robot Learning. 2018.

[134] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. “MT-Opt: Continuous Multi-Task Robotic
Reinforcement Learning at Scale”. In: arXiv preprint arXiv:2104.08212 (2021).

[135] Russell Kaplan, Christopher Sauer, and Alexander Sosa. “Beating Atari with Natural Language
Guided Reinforcement Learning”. In: arXiv preprint arXiv:1704.05539 (2017).

[136] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator architecture for generative
adversarial networks”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

284

[137] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.
“Vizdoom: A doom-based ai research platform for visual reinforcement learning”. In: Computational
Intelligence and Games. 2016.

[138] Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer, and Yejin Choi. “Mise en Place:
Unsupervised Interpretation of Instructional Recipes”. In: Empirical Methods in Natural Language
Processing. 2015.

[139] Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
“Bayesian Model-Agnostic Meta-Learning”. In: Neural Information Processing Systems. 2018.

[140] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: International
Conference on Learning Representations. 2015.

[141] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: International
Conference on Learning Representations. 2014.

[142] Jens Kober, Katharina Mülling, Oliver Krömer, Christoph H Lampert, Bernhard Schölkopf, and
Jan Peters. “Movement templates for learning of hitting and batting”. In: IEEE International
Conference on Robotics and Automation. 2010.

[143] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese neural networks for one-shot
image recognition”. In: Deep Learning Workshop at International Conference on Machine Learning.
2015.

[144] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. “From skills to symbols:
Learning symbolic representations for abstract high-level planning”. In: Journal of Artificial
Intelligence Research (2018).

[145] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
“Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward Bias in Adversarial
Imitation Learning”. In: International Conference on Learning Representations. 2019.

[146] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus,
and Yves Le Traon. “Fixminer: Mining relevant fix patterns for automated program repair”. In:
Empirical Software Engineering (2020).

[147] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Neural Information Processing Systems. 2012.

[148] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. “Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation”. In: Neural
Information Processing Systems. 2016.

[149] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. “Rma: Rapid motor adaptation for
legged robots”. In: Robotics: Science and Systems. 2021.

[150] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. “Conservative q-learning for offline
reinforcement learning”. In: Neural Information Processing Systems. 2020.

285

[151] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. “One shot learning of
simple visual concepts”. In: Conference of the Cognitive Science Society. 2011.

[152] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and scalable predictive
uncertainty estimation using deep ensembles”. In: Neural Information Processing Systems. 2017.

[153] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. “Albert: A lite bert for self-supervised learning of language representations”. In:
arXiv preprint arXiv:1909.11942 (2019).

[154] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt,
Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. “Discovering symbolic policies with deep
reinforcement learning”. In: International Conference on Machine Learning. 2021.

[155] Miguel Lázaro-Gredilla, Dianhuan Lin, J Swaroop Guntupalli, and Dileep George. “Beyond
imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs”. In: Science
Robotics (2019).

[156] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and Hal Daumé III. “Hierarchical
Imitation and Reinforcement Learning”. In: International Conference on Machine Learning. 2018.

[157] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. “Set
Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”. In:
International Conference on Machine Learning. 2019.

[158] Yoonho Lee and Seungjin Choi. “Gradient-Based Meta-Learning with Learned Layerwise Metric
and Subspace”. In: International Conference on Machine Learning. 2018.

[159] Youngwoon Lee, Edward S Hu, Zhengyu Yang, and Joseph J. Lim. “To follow or not to follow:
Selective imitation learning from observations”. In: Conference on Robot Learning. 2019.

[160] Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S. Hu, and Joseph J. Lim.
“Composing Complex Skills by Learning Transition Policies”. In: International Conference on
Learning Representations. 2019.

[161] Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J. Lim. “Generalizable Imitation Learning
from Observation via Inferring Goal Proximity”. In: Neural Information Processing Systems. 2021.

[162] Vladimir Iosifovich Levenshtein. “Binary codes capable of correcting deletions, insertions and
reversals”. In: Soviet Physics Doklady (1966).

[163] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. “Offline reinforcement learning:
Tutorial, review, and perspectives on open problems”. In: arXiv preprint arXiv:2005.01643 (2020).

[164] Andrew Levy, Robert Platt, and Kate Saenko. “Hierarchical Actor-Critic”. In: arXiv preprint
arXiv:1712.00948 (2017).

[165] Ke Li and Jitendra Malik. “Learning to Optimize”. In: International Conference on Learning
Representations. 2016.

286

[166] Yi Li, Shaohua Wang, and Tien N Nguyen. “DLfix: Context-based code transformation learning for
automated program repair”. In: International Conference on Software Engineering. 2020.

[167] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-Level Code
Generation with AlphaCode. 2022. url:
https://www.deepmind.com/blog/article/Competitive-programming-with-AlphaCode.

[168] Yujia Li, Felix Gimeno, Pushmeet Kohli, and Oriol Vinyals. “Strong generalization and efficiency in
neural programs”. In: arXiv preprint arXiv:2007.03629 (2020).

[169] Yuan-Hong Liao, Xavier Puig, Marko Boben, Antonio Torralba, and Sanja Fidler. “Synthesizing
Environment-Aware Activities via Activity Sketches”. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019.

[170] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. “Continuous control with deep reinforcement learning”. In:
International Conference on Learning Representations. 2016.

[171] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. “NL2Bash: A corpus and
semantic parser for natural language interface to the linux operating system”. In: International
Conference on Language Resources and Evaluation. 2018.

[172] Zachary C Lipton. “The Mythos of Model Interpretability”. In: Workshop on Human Interpretability
in Machine Learning at International Conference on Machine Learning. 2016.

[173] Paweł Liskowski, Krzysztof Krawiec, Nihat Engin Toklu, and Jerry Swan. “Program Synthesis as
Latent Continuous Optimization: Evolutionary Search in Neural Embeddings”. In: Genetic and
Evolutionary Computation Conference. 2020.

[174] Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. “Decoupling exploration and
exploitation for meta-reinforcement learning without sacrifices”. In: International Conference on
Machine Learning. 2021.

[175] Yunchao Liu, Jiajun Wu, Zheng Wu, Daniel Ritchie, William T. Freeman, and Joshua B. Tenenbaum.
“Learning to Describe Scenes with Programs”. In: International Conference on Learning
Representations. 2019.

[176] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. “Imitation from observation:
Learning to imitate behaviors from raw video via context translation”. In: IEEE International
Conference on Robotics and Automation. 2018.

[177] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic
segmentation”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2015.

287

https://www.deepmind.com/blog/article/Competitive-programming-with-AlphaCode

[178] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to Attention-based
Neural Machine Translation”. In: Empirical Methods in Natural Language Processing. 2015.

[179] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. “Learning latent plans from play”. In: Conference on Robot Learning. 2020.

[180] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In: Journal of
Machine Learning Research (2008).

[181] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. “Fine-Grained
Visual Classification of Aircraft”. In: arXiv preprint airxiv:1306.5151 (2013).

[182] Jonathan Malmaud, Earl Wagner, Nancy Chang, and Kevin Murphy. “Cooking with Semantics”. In:
Workshop on Semantic Parsing at Association for Computational Linguistics. 2014.

[183] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian Gao,
John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and Li Fei-Fei. “RoboTurk: A
Crowdsourcing Platform for Robotic Skill Learning through Imitation”. In: Conference on Robot
Learning. 2018.

[184] Jiayuan Mao, Honghua Dong, and Joseph J. Lim. “Universal Agent for Disentangling Environments
and Tasks”. In: International Conference on Learning Representations. 2018.

[185] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. “The
Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural
Supervision”. In: International Conference on Learning Representations. 2019.

[186] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. “Least
squares generative adversarial networks”. In: International Conference on Computer Vision. 2017.

[187] Jarryd Martin, S Suraj Narayanan, Tom Everitt, and Marcus Hutter. “Count-based exploration in
feature space for reinforcement learning”. In: AAAI Conference on Artificial Intelligence. 2017.

[188] Maja J Mataric. “Reward functions for accelerated learning”. In: International Conference on
Machine Learning. 1994.

[189] Jan Matas, Stephen James, and Andrew J Davison. “Sim-to-real reinforcement learning for
deformable object manipulation”. In: Conference on Robot Learning. 2018.

[190] Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and
Nicolas Heess. “Learning human behaviors from motion capture by adversarial imitation”. In: arXiv
preprint arXiv: 1707.02201 (2017).

[191] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham,
Tom Erez, Greg Wayne, and Nicolas Heess. “Catch & Carry: Reusable Neural Controllers for
Vision-Guided Whole-Body Tasks”. In: ACM Transactions on Graphics (2020).

288

[192] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian. “DeepDelta:
learning to repair compilation errors”. In: ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2019.

[193] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. “A Simple Neural Attentive
Meta-Learner”. In: International Conference on Learning Representations. 2018.

[194] Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin, and Yoav Artzi.
“Mapping instructions to actions in 3D environments with visual goal prediction”. In: Empirical
Methods in Natural Language Processing. 2018.

[195] Dipendra Misra, John Langford, and Yoav Artzi. “Mapping instructions and visual observations to
actions with reinforcement learning”. In: Empirical Methods in Natural Language Processing. 2017.

[196] Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. “Offline
Meta-Reinforcement Learning with Advantage Weighting”. In: International Conference on Machine
Learning. 2021.

[197] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral Normalization for
Generative Adversarial Networks”. In: International Conference on Learning Representations. 2018.

[198] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous methods for deep reinforcement
learning”. In: International Conference on Machine Learning. 2016.

[199] Volodymyr Mnih, Nicolas Heess, Alex Graves, and koray kavukcuoglu koray. “Recurrent Models of
Visual Attention”. In: Neural Information Processing Systems. 2014.

[200] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. “Human Level Control Through Deep
Reinforcement Learning”. In: Nature (2015).

[201] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. “Learning to select and generalize
striking movements in robot table tennis”. In: The International Journal of Robotics Research (2013).

[202] Tsendsuren Munkhdalai and Hong Yu. “Meta Networks”. In: International Conference on Machine
Learning. 2017.

[203] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. “Data-efficient hierarchical
reinforcement learning”. In: Neural Information Processing Systems. 2018.

[204] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. “Deep online learning via meta-learning:
Continual adaptation for model-based rl”. In: International Conference on Learning Representations.
2019.

289

[205] Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. “Skill-based
Meta-Reinforcement Learning”. In: Meta-Learning Workshop at Neural Information Processing
Systems. 2021.

[206] Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. “Skill-based
Meta-Reinforcement Learning”. In: Deep Reinforcement Learning Workshop at Neural Information
Processing Systems. 2021.

[207] Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. “Skill-based
Meta-Reinforcement Learning”. In: International Conference on Learning Representations. 2022.

[208] Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. “Neural programmer: Inducing latent
programs with gradient descent”. In: International Conference on Learning Representations. 2015.

[209] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance under reward transformations:
Theory and application to reward shaping”. In: International Conference on Machine Learning. 1999.

[210] Andrew Y Ng, Stuart J Russell, et al. “Algorithms for inverse reinforcement learning.” In:
International Conference on Machine Learning. 2000.

[211] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. “Semfix:
Program repair via semantic analysis”. In: Conference on Software Engineering. 2013.

[212] Alex Nichol and John Schulman. “Reptile: a Scalable Metalearning Algorithm”. In: arXiv preprint
arXiv:1803.02999 (2018).

[213] Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara Marthi, and
Andrew G Barto. “Learning grounded finite-state representations from unstructured
demonstrations”. In: The International Journal of Robotics Research (2015).

[214] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning deconvolution network for
semantic segmentation”. In: International Conference on Computer Vision. 2015.

[215] Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B. Tenenbaum, and
Armando Solar-Lezama. “Representing Partial Programs with Blended Abstract Semantics”. In:
International Conference on Learning Representations. 2021.

[216] Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. “Zero-shot task generalization with
multi-task deep reinforcement learning”. In: International Conference on Machine Learning. 2017.

[217] Boris N. Oreshkin, Pau Rodriguez, and Alexandre Lacoste. “TADAM: Task dependent adaptive
metric for improved few-shot learning”. In: Neural Information Processing Systems. 2018.

[218] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. “Deep exploration via
bootstrapped DQN”. In: Neural Information Processing Systems. 2016.

[219] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. “Neuro-symbolic program synthesis”. In: International Conference on Learning
Representations. 2017.

290

[220] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. “Semantic Image Synthesis with
Spatially-Adaptive Normalization”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019.

[221] Ronald Parr and Stuart J Russell. “Reinforcement learning with hierarchies of machines”. In: Neural
Information Processing Systems. 1998.

[222] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. “Learning and generalization of
motor skills by learning from demonstration”. In: IEEE International Conference on Robotics and
Automation. 2009.

[223] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic Differentiation in
PyTorch”. In: Autodiff Workshop at Neural Information Processing System. 2017.

[224] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. “Curiosity-driven exploration
by self-supervised prediction”. In: International Conference on Machine Learning. 2017.

[225] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu,
Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. “Zero-shot visual imitation”. In:
International Conference on Learning Representations. 2018.

[226] Richard E Pattis. Karel the robot: a gentle introduction to the art of programming. John Wiley & Sons,
Inc., 1981.

[227] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. “Sim-to-real transfer
of robotic control with dynamics randomization”. In: IEEE International Conference on Robotics and
Automation. 2018.

[228] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. “Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning”. In: ACM Transactions on
Graphics (2017).

[229] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe: Global Vectors for Word
Representation”. In: Empirical Methods in Natural Language Processing. 2014.

[230] Ethan Perez, Harm De Vries, Florian Strub, Vincent Dumoulin, and Aaron Courville. “Learning
visual reasoning without strong priors”. In: (2017).

[231] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. “FiLM: Visual
Reasoning with a General Conditioning Layer”. In: AAAI Conference on Artificial Intelligence. 2018.

[232] Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. “Accelerating Reinforcement Learning with
Learned Skill Priors”. In: Conference on Robot Learning. 2020.

[233] Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J. Lim. “Demonstration-Guided Reinforcement
Learning with Learned Skills”. In: Conference on Robot Learning. 2021.

291

[234] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. “Deep Contextualized Word Representations”. In: North American Chapter of the
Association for Computational Linguistics. 2018.

[235] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. “Multi-goal reinforcement
learning: Challenging robotics environments and request for research”. In: arXiv preprint
arXiv:1802.09464 (2018).

[236] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”. In: Neural
Information Processing Systems. 1989.

[237] Dean A Pomerleau. “Efficient training of artificial neural networks for autonomous navigation”. In:
Neural Computation (1991).

[238] Vitchyr H Pong, Ashvin Nair, Laura Smith, Catherine Huang, and Sergey Levine. “Offline
Meta-Reinforcement Learning with Online Self-Supervision”. In: arXiv preprint arXiv:2107.03974
(2021).

[239] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. “Estimating Training Data
Influence by Tracing Gradient Descent”. In: Neural Information Processing Systems. 2020.

[240] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. “Visual Adversarial Imitation
Learning using Variational Models”. In: arXiv preprint arXiv:2107.08829 (2021).

[241] Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, and Douglas Eck. “Online and
Linear-Time Attention by Enforcing Monotonic Alignments”. In: International Conference on
Machine Learning. 2017.

[242] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. “Learning Complex Dexterous Manipulation with Deep
Reinforcement Learning and Demonstrations”. In: Robotics: Science and Systems. 2018.

[243] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. “Efficient off-policy
meta-reinforcement learning via probabilistic context variables”. In: International Conference on
Machine Learning. 2019.

[244] Sachin Ravi and Hugo Larochelle. “Optimization as a Model for Few-Shot Learning”. In:
International Conference on Learning Representations. 2017.

[245] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. “Compositional program synthesis
from natural language and examples”. In: International Joint Conference on Artificial Intelligence.
2015.

[246] Siddharth Reddy, Anca D. Dragan, and Sergey Levine. “SQIL: Imitation Learning via Reinforcement
Learning with Sparse Rewards”. In: International Conference on Learning Representations. 2020.

[247] Scott Reed and Nando De Freitas. “Neural programmer-interpreters”. In: International Conference on
Learning Representations. 2016.

292

[248] John Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and
Sergey Levine. “Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with
Trajectory Embeddings”. In: International Conference on Machine Learning. 2018.

[249] John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, John DeNero, Pieter Abbeel, and
Sergey Levine. “Guiding policies with language via meta-learning”. In: International Conference on
Learning Representations. 2019.

[250] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave,
Tom van de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. “Learning by Playing
Solving Sparse Reward Tasks from Scratch”. In: International Conference on Machine Learning. 2018.

[251] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation learning and
structured prediction to no-regret online learning”. In: International Conference on Artificial
Intelligence and Statistics. 2011.

[252] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, Pieter Abbeel, Dmitriy Shingarey,
Lukas Kaul, Tamim Asfour, C Dometios Athanasios, You Zhou, et al. “ProMP: Proximal Meta-Policy
Search”. In: International Conference on Learning Representations. 2019.

[253] Reuven Y Rubinstein. “Optimization of computer simulation models with rare events”. In: European
Journal of Operational Research (1997).

[254] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. “Meta-Learning with Latent Embedding Optimization”. In: International
Conference on Learning Representations. 2019.

[255] Dorsa Sadigh and Ashish Kapoor. “Safe Control under Uncertainty with Probabilistic Signal
Temporal Logic”. In: Robotics: Science and Systems. 2016.

[256] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
“Meta-Learning with Memory-Augmented Neural Networks”. In: International Conference on
Machine Learning. 2016.

[257] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter Battaglia, and Tim Lillicrap. “A simple neural network module for relational reasoning”. In:
Neural Information Processing Systems. 2017.

[258] Stefan Schaal. “Learning from demonstration”. In: Neural Information Processing Systems. 1997.

[259] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. “Learning Movement Primitives”. In:
Robotics Research. 2005.

[260] Jürgen Schmidhuber. “Towards compositional learning with dynamic neural networks”. In: (1990).

[261] Jurgen Schmidhuber. “Evolutionary principles in self-referential learning. (On learning how to
learn: The meta-meta-... hook.)” Diploma Thesis. 1987.

293

[262] Jürgen Schmidhuber, Jieyu Zhao, and Nicol N Schraudolph. “Reinforcement learning with
self-modifying policies”. In: Learning to learn. 1998.

[263] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. “Shifting inductive bias with success-story
algorithm, adaptive Levin search, and incremental self-improvement”. In: Machine Learning (1997).

[264] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. “Trust region
policy optimization”. In: International Conference on Machine Learning. 2015.

[265] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. “Proximal policy
optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

[266] Eric Schulte, Stephanie Forrest, and Westley Weimer. “Automated program repair through the
evolution of assembly code”. In: International Conference on Automated Software Engineering. 2010.

[267] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,
Sergey Levine, and Google Brain. “Time-contrastive networks: Self-supervised learning from
video”. In: IEEE International Conference on Robotics and Automation. 2018.

[268] Pierre Sermanet, Kelvin Xu, and Sergey Levine. “Unsupervised perceptual rewards for imitation
learning”. In: Robotics: Science and Systems. 2017.

[269] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. “Dynamics-aware
unsupervised discovery of skills”. In: International Conference on Learning Representations. 2020.

[270] Dinggang Shen, Guorong Wu, and Heung-Il Suk. “Deep learning in medical image analysis”. In:
Annual review of biomedical engineering (2017).

[271] Owen Shen. Interpretability in ML: A Broad Overview. 2020. url: https://mlu.red/muse/52906366310.

[272] Nobuyuki Shimizu and Andrew Haas. “Learning to follow navigational route instructions”. In:
International Joint Conference on Artificial Intelligence. 2009.

[273] Eui Chul Shin, Illia Polosukhin, and Dawn Song. “Improving neural program synthesis with
inferred execution traces”. In: Neural Information Processing Systems. 2018.

[274] Pranav Shyam, Shubham Gupta, and Ambedkar Dukkipati. “Attentive Recurrent Comparators”. In:
International Conference on Machine Learning. 2017.

[275] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, and Martin Riedmiller. “Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning”. In: International Conference on Learning
Representations. 2020.

[276] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. “Mastering
the game of Go with deep neural networks and tree search”. In: Nature (2016).

294

https://mlu.red/muse/52906366310

[277] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. “A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play”. In: Science (2018).

[278] Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. “Few-shot
Bayesian imitation learning with logical program policies”. In: AAAI Conference on Artificial
Intelligence. 2020.

[279] Amitojdeep Singh, Sourya Sengupta, and Vasudevan Lakshminarayanan. “Explainable deep
learning models in medical image analysis”. In: Journal of Imaging (2020).

[280] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical Networks for Few-shot Learning”. In:
Neural Information Processing Systems. 2017.

[281] Sungryull Sohn, Junhyuk Oh, and Honglak Lee. “Hierarchical Reinforcement Learning for
Zero-shot Generalization with Subtask Dependencies”. In: Neural Information Processing Systems.
2018.

[282] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. “Universal Planning
Networks: Learning Generalizable Representations for Visuomotor Control”. In: International
Conference on Machine Learning. 2018.

[283] Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever. “Third Person Imitation Learning”. In:
International Conference on Learning Representations. 2017.

[284] Shao-Hua Sun. Multi-digit MNIST for Few-shot Learning. 2019. url:
https://github.%20com/shaohua0116/MultiDigitMNIST.

[285] Shao-Hua Sun, Shang-Pu Fan, and Yu-Chiang Frank Wang. “Exploiting image structural similarity
for single image rain removal”. In: IEEE International Conference on Image Processing. 2014.

[286] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning Zhang, and Joseph J. Lim. “Multi-view to
Novel View: Synthesizing Novel Views with Self-Learned Confidence”. In: European Conference on
Computer Vision. 2018.

[287] Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. “Neural program synthesis
from diverse demonstration videos”. In: International Conference on Machine Learning. 2018.

[288] Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. “Program Guided Agent”. In: International Conference
on Learning Representations. 2020.

[289] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, and Timothy M. Hospedales.
“Learning to Compare: Relation Network for Few-Shot Learning”. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2018.

[290] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural
networks”. In: Neural Information Processing Systems. 2014.

295

https://github.%20com/shaohua0116/MultiDigitMNIST

[291] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning”. In: Artificial intelligence (1999).

[292] Richard Stuart Sutton. “Temporal credit assignment in reinforcement learning”. PhD thesis.
University of Massachusetts, Amherst, 1984.

[293] Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. “Of Moments and
Matching: A Game-Theoretic Framework for Closing the Imitation Gap”. In: International
Conference on Machine Learning. 2021.

[294] Kai Sheng Tai, Richard Socher, and Christopher D Manning. “Improved semantic representations
from tree-structured long short-term memory networks”. In: Assosiation of Computational
Linguistics. 2015.

[295] Yee Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. “Distral: Robust multitask reinforcement learning”. In: Neural
Information Processing Systems. 2017.

[296] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal Banerjee,
Seth J Teller, and Nicholas Roy. “Understanding Natural Language Commands for Robotic
Navigation and Mobile Manipulation.” In: AAAI Conference on Artificial Intelligence. 2011.

[297] Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAllister,
Joseph E. Gonzalez, Sergey Levine, Francesco Borrelli, and Ken Goldberg. “Safety Augmented Value
Estimation From Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic
Tasks”. In: IEEE Robotics and Automation Letters (2020).

[298] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

[299] Richard Socher Tianmin Shu Caiming Xiong. “Hierarchical and Interpretable Skill Acquisition in
Multi-task Reinforcement Learning”. In: International Conference on Learning Representations. 2018.

[300] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-based control”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012.

[301] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral cloning from observation”. In:
International Joint Conference on Artificial Intelligence. 2018.

[302] Faraz Torabi, Garrett Warnell, and Peter Stone. “Generative adversarial imitation from observation”.
In: arXiv preprint arXiv:1807.06158 (2018).

[303] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. “Meta-dataset: A
dataset of datasets for learning to learn from few examples”. In: International Conference on
Learning Representations. 2020.

[304] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J. Lim. “Learning to Synthesize Programs
as Interpretable and Generalizable Policies”. In: Neural Information Processing Systems. 2021.

296

[305] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with double
q-learning”. In: AAAI Conference on Artificial Intelligence. 2016.

[306] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In: Neural Information Processing
Systems. 2017.

[307] Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. “Imitation-projected programmatic
reinforcement learning”. In: Neural Information Processing Systems. 2019.

[308] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
“Programmatically interpretable reinforcement learning”. In: International Conference on Machine
Learning. 2018.

[309] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,
David Silver, and Koray Kavukcuoglu. “FeUdal Networks for Hierarchical Reinforcement Learning”.
In: International Conference on Machine Learning. 2017.

[310] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. “Grandmaster
level in StarCraft II using multi-agent reinforcement learning”. In: Nature (2019).

[311] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. “Matching networks for one
shot learning”. In: Neural Information Processing Systems. 2016.

[312] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. “Show and tell: A neural image
caption generator”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2015.

[313] Adam Vogel and Daniel Jurafsky. “Learning to Follow Navigational Directions”. In: Assosiation of
Computational Linguistics. 2010.

[314] Risto Vuorio, Dong-Yeon Cho, Daejoong Kim, and Jiwon Kim. “Meta continual learning”. In: arXiv
preprint arXiv:1806.06928 (2018).

[315] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J. Lim. “Multimodal Model-Agnostic
Meta-Learning via Task-Aware Modulation”. In: Neural Information Processing Systems. 2019.

[316] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J. Lim. “Toward Multimodal Model-Agnostic
Meta-Learning”. In: Meta-Learning Workshop at Neural Information Processing Systems. 2018.

[317] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. “The
caltech-ucsd birds-200-2011 dataset”. In: (2011).

[318] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Demis Hassabis, and Matthew Botvinick. “Prefrontal cortex as a meta-reinforcement learning
system”. In: Nature Neuroscience (2018).

297

[319] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. “Learning to reinforcement learn”. In:
arXiv preprint arXiv:1611.05763 (2016).

[320] Ke Wang, Rishabh Singh, and Zhendong Su. “Dynamic neural program embedding for program
repair”. In: arXiv preprint arXiv:1711.07163 (2017).

[321] Sida I Wang, Samuel Ginn, Percy Liang, and Christoper D Manning. “Naturalizing a programming
language via interactive learning”. In: Assosiation of Computational Linguistics. 2017.

[322] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. “Nervenet: Learning structured policy with
graph neural networks”. In: International Conference on Learning Representations. 2018.

[323] Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
“Robust imitation of diverse behaviors”. In: Neural Information Processing Systems. 2017.

[324] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk.
“Sorting and transforming program repair ingredients via deep learning code similarities”. In: IEEE
International Conference on Software Analysis, Evolution and Reengineering. 2019.

[325] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning (1992).

[326] Elly Winner and Manuela Veloso. “DISTILL: Learning Domain-Specific Planners by Example”. In:
International Conference on Machine Learning. 2003.

[327] Catherine Wong, Kevin Ellis, Joshua B Tenenbaum, and Jacob Andreas. “Leveraging Language to
Learn Program Abstractions and Search Heuristics”. In: International Conference on Machine
Learning. 2021.

[328] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. “Neural Scene De-rendering”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2017.

[329] Da Xiao, Jo-Yu Liao, and Xingyuan Yuan. “Improving the Universality and Learnability of Neural
Programmer-Interpreters with Combinator Abstraction”. In: International Conference on Learning
Representations. 2018.

[330] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. “Attentional shapecontextnet for point
cloud recognition”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018.

[331] Qi Xin and Steven P Reiss. “Leveraging syntax-related code for automated program repair”. In:
International Conference on Automated Software Engineering. 2017.

[332] Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. “Neural
task programming: Learning to generalize across hierarchical tasks”. In: IEEE International
Conference on Robotics and Automation. 2018.

298

[333] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. “Show, attend and tell: Neural image caption generation with
visual attention”. In: International Conference on Machine Learning. 2015.

[334] Jun Yamada, Youngwoon Lee, Gautam Salhotra, Karl Pertsch, Max Pflueger, Gaurav S Sukhatme,
Joseph J. Lim, and Peter Englert. “Motion planner augmented reinforcement learning for robot
manipulation in obstructed environments”. In: Conference on Robot Learning. 2020.

[335] Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. “Neural
execution engines: Learning to execute subroutines”. In: Neural Information Processing Systems.
2020.

[336] Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and
Chuang Gan. “Imitation learning from observations by minimizing inverse dynamics
disagreement”. In: Neural Information Processing Systems. 2019.

[337] Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and
Martin Rinard. “Program Synthesis Guided Reinforcement Learning”. In: arXiv preprint
arXiv:2102.11137 (2021).

[338] Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Jie Tan, and Chelsea Finn. “NoRML: No-reward meta
learning”. In: International Conference on Autonomous Agents and Multiagent Systems. 2019.

[339] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
“Xlnet: Generalized autoregressive pretraining for language understanding”. In: Neural Information
Processing Systems. 2019.

[340] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. “Stacked attention networks for
image question answering”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2016.

[341] Michihiro Yasunaga and Percy Liang. “Graph-based, Self-Supervised Program Repair from
Diagnostic Feedback”. In: International Conference on Machine Learning. 2020.

[342] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. “Learning embedding adaptation for
few-shot learning”. In: arXiv preprint arXiv:1812.03664 (2018).

[343] Pengcheng Yin and Graham Neubig. “Tranx: A transition-based neural abstract syntax parser for
semantic parsing and code generation”. In: Empirical Methods in Natural Language Processing. 2018.

[344] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. “Spider: A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task”. In: Empirical Methods in Natural Language
Processing. 2018.

[345] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and
Sergey Levine. “One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning”.
In: Robotics: Science and Systems. 2018.

299

[346] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
“Combo: Conservative offline model-based policy optimization”. In: arXiv preprint arXiv:2102.08363
(2021).

[347] Wojciech Zaremba and Ilya Sutskever. “Reinforcement learning neural turing machines-revised”.
In: arXiv preprint arXiv:1505.00521 (2015).

[348] Grace Zhang, Linghan Zhong, Youngwoon Lee, and Joseph J. Lim. “Policy Transfer across Visual
and Dynamics Domain Gaps via Iterative Grounding”. In: Robotics: Science and Systems. 2021.

[349] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-Attention Generative
Adversarial Networks”. In: International Conference on Machine Learning. 2019.

[350] Jesse Zhang, Brian Cheung, Chelsea Finn, Sergey Levine, and Dinesh Jayaraman. “Cautious
Adaptation For Reinforcement Learning in Safety-Critical Settings”. In: International Conference on
Machine Learning. 2020.

[351] Zelin Zhao, Karan Samel, Binghong Chen, and Le Song. “ProTo: Program-Guided Transformer for
Program-Guided Tasks”. In: Neural Information Processing Systems. 2021.

[352] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. “An inductive synthesis
framework for verifiable reinforcement learning”. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2019.

[353] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. “Maximum entropy inverse
reinforcement learning”. In: AAAI Conference on Artificial Intelligence. 2008.

[354] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. “Fast context
adaptation via meta-learning”. In: International Conference on Machine Learning. 2019.

[355] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. “VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via
Meta-Learning”. In: International Conference on Learning Representations. 2020.

[356] Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez Colmenarej, David Budden,
Serkan Cabi, Misha Denil, Nando de Freitas, and Ziyu Wang. “Task-Relevant Adversarial Imitation
Learning”. In: Conference on Robot Learning. 2020.

300

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	I Introduction
	Introduction
	Overview
	Program Inference
	Learning to Synthesize Programs from Demonstrations
	Learning to Synthesize Programs from Reward Functions

	Primitive Skill Acquisition
	Meta-Learning & Meta-Reinforcement Learning
	Learning from Demonstrations

	Task Execution
	Learning to Execute Programs
	Learning to Compose Skills

	Published Works

	II Program Inference
	Learning to Synthesize Programs from Demonstrations
	Introduction
	Related Work
	Problem Overview
	Approach
	Model Architecture
	Demonstration Encoder
	Summarizer Module
	Program Decoder

	Learning
	Multi-task Objective

	Experiments
	Evaluation Metric
	Evaluation Setting
	Baselines
	Karel
	Environment and Dataset
	Performance Evaluation
	Effect of Summarizer

	ViZDoom
	Environment and Dataset
	Performance Evaluation
	Analysis
	Debugging the Synthesized Program

	Conclusion
	Appendix
	Detailed Network Architectures
	Demonstration Encoder
	Summarizer Module
	Program Decoder

	Training Details
	One-shot Imitation Learning Baseline
	Dataset Details
	Karel
	ViZDoom

	Learning to Synthesize Programs from Reward Functions
	Introduction
	Related Work
	Problem Formulation
	Approach
	Learning a Program Embedding Space
	Program Reconstruction
	Program Behavior Reconstruction
	Latent Behavior Reconstruction

	Latent Program Search: Synthesizing a Task-Solving Program

	Experiments
	Karel Domain
	Programs
	Ablation Study
	Baselines
	Results
	Generalization
	Interpretability

	Discussion
	Appendix
	Program Embedding Space Visualizations
	Cross Entropy Method Trajectory Visualization
	Program Embedding Space Interpolations
	Program Evolution
	Interpretability: Human Debugging of LEAPS Programs
	Optimal and Synthesized Programs
	Program Behavior Reconstruction
	Karel Environment Tasks

	Additional Generalization Experiments
	Generalization on FourCorner, TopOff, and Harvester
	Generalization to Unseen Configurations

	Additional Analysis on Experimental Results
	DRL vs. DRL-abs
	VIPER Generalization

	Detailed Descriptions and Illustrations of Ablations and Baselines
	Ablations
	Baselines

	Program Dataset Generation Details
	Karel Task Details
	StairClimber
	FourCorner
	TopOff
	Maze
	CleanHouse
	Harvester

	Hyperparameters and Training Details
	DRL and DRL-abs
	DRL-abs-t
	HRL
	Naïve
	VIPER
	Program Embedding Space VAE Model
	Cross-Entropy Method (CEM)
	Random Search LEAPS Ablation

	Computational Resources
	Toward Robotics Applications

	III Primitive Skill Acquisition
	Meta-Learning on Multimodal Task Distributions
	Introduction
	Related Work
	Preliminaries
	Method
	Modulation Network
	Task Network

	Experiments
	Regression Experiments
	Image Classification
	Reinforcement Learning

	Conclusion
	Appendix
	Details on Modulation Operators
	Further Discussion on Related Works
	Baselines
	Additional Experimental Details
	Regression
	Image Classification
	Reinforcement Learning

	Additional Experimental Results
	Regression
	Image Classification
	Reinforcement Learning

	Meta-Learning on Long-Horizon and Sparse-Reward Tasks
	Introduction
	Related Work
	Problem Formulation and Preliminaries
	Approach
	Skill Extraction
	Skill-based Meta-Training
	Target Task Learning

	Experiments
	Experimental Setup
	Maze Navigation
	Kitchen Manipulation

	Baselines
	Results
	Meta-Training Task Distribution Analysis

	Conclusion
	Appendix
	Meta-Reinforcement Learning Method Ablation
	Learning Efficiency on Target Tasks with Few Episodes of Experience
	Investigating Offline Data vs. Target Domain Shift
	Implementation Details on Our Method
	Model Architecture
	Training Details

	Implementation Details on Baselines
	SAC
	PEARL and PEARL-ft
	SPiRL
	Multi-task RL (MTRL)

	Meta-Training Tasks and Target Tasks.
	Maze Navigation
	Kitchen Manipulation

	Learning from Observation
	Introduction
	Related Work
	Method
	Preliminaries
	Learning Goal Proximity Function
	Training Policy with Proximity Reward

	Experiments
	Experimental Setup
	Baselines
	Navigation
	Maze2D
	Ant Locomotion
	Robotic Manipulation
	Dexterous Hand Manipulation
	Ablation Study

	Conclusion
	Appendix
	Comparison with GAIL and Its Variants
	Failure of GAIfO and SQIL
	Analysis on Generalization of Our Method and Baselines
	Further Ablations
	Qualitative Results
	Implementation Details
	Environment Details
	Network Architectures
	Training Details

	IV Task Execution
	Learning to Execute Programs
	Introduction
	Related Work
	Problem Formulation
	Approach
	Program Interpreter
	Perception Module
	Policy
	Learning
	Perception Module
	Policy

	Experiments
	Experimental Setups
	Environment
	Task Instructions

	Training
	End-to-end Learning Models
	Results
	Task Completion
	Analysis

	Policy Modulation

	Conclusion
	Appendix
	Program Execution
	DSL Design Principle
	Extended Related Work
	Discussions on Learned Modulation Mechanisms
	Additional Experimental Details
	Environment Details
	Ground Truth Perceptions for End-to-end Learning Baselines
	Task Instructions Details
	Network Architectures
	Raw RGB Input
	Failure Analysis
	Hyperparameters
	Computational Resources

	Learning to Compose Skills
	Introduction
	Related Work
	Approach
	Preliminaries
	Modular Framework with Transition Policies
	Training Transition Policies

	Experiments
	Baselines
	Robotic Manipulation
	Locomotion
	Ablation Study
	Training of Transition Policy and Proximity Predictor
	Visualizing Transition Trajectory

	Conclusion
	Appendix
	Acquiring Primitive Policies
	Training Details
	Implementation Details
	Replay Buffers
	Proximity Reward
	Proximity Predictor
	Transition Policies
	Scalability

	Environment Descriptions
	Robotic Manipulation
	Locomotion

	V Conclusion
	Conclusion
	Summary
	Future Directions
	Program Inference
	Primitive Skill Acquisition
	Task Execution

	Bibliography

