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Abstract
Interpreting decision making logic in demonstra-
tion videos is key to collaborating with and mim-
icking humans. To empower machines with this
ability, we propose a neural program synthesizer
that is able to explicitly synthesize underlying
programs from behaviorally diverse and visually
complicated demonstration videos. We introduce
a summarizer module as part of our model to
improve the network’s ability to integrate multi-
ple demonstrations varying in behavior. We also
employ a multi-task objective to encourage the
model to learn meaningful intermediate represen-
tations for end-to-end training. We show that our
model is able to reliably synthesize underlying
programs as well as capture diverse behaviors ex-
hibited in demonstrations. The code is available
at https://shaohua0116.github.io/demo2program.

1. Introduction
Imagine you are watching others driving cars. You will
easily notice many common behaviors even if you know
nothing about driving. For example, cars stop when the
traffic light turns to red and move again when the light turns
to green. Cars also slow down when pedestrians are seen
jay-walking. Through observation, humans can abstract
behaviors and understand the reasoning behind behaviors
– especially extracting the structural relationship between
actions (e.g. start, slow down, stop) and perception (e.g.
light, pedestrian).

Can machines also reason decision making logic behind
behaviors? There has been tremendous effort and success
in understanding behaviors such as recognizing actions (Si-
monyan & Zisserman, 2014), describing activities in lan-
guages (Venugopalan et al., 2015), and predicting future
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def run():
while frontIsClear():

move()
turnRight()
if thereIsPig():

attack()
else:

if not thereIsWolf():
spawnPig()

else:
giveBone()

Synthesized Program
Demonstrations

demo 1

demo 2

demo 3

Figure 1. An illustration of neural program synthesis from demon-
strations. Given multiple demonstration videos exhibiting diverse
behaviors, our neural program synthesizer learn to produce inter-
pretable and executable underlying programs. Divergence above
occurs based on perception in the second frame.

outcomes (Srivastava et al., 2015). Yet, interpreting reasons
behind behaviors is relatively unexplored and is a crucial
skill for machines to collaborate with and mimic humans.
Hence, our goal is to step towards developing a method that
can interpret perception-based decision making logic from
diverse behaviors seen in multiple visual demonstrations.

Our insight is to exploit declarative programs, structured in
a formal language, as representations of decision making
logics. The formal language is composed of action blocks,
perception blocks, and control flow (e.g. if/else). Programs
written in such a language can explicitly model the connec-
tion between an observation (e.g. traffic light, biker) and
an action (e.g. stop). An example is shown in Figure 11.
Described in a formal language, programs are logically inter-
pretable and executable. Thus, the problem of interpreting
decision making logic from visual demonstrations can be
reduced to extracting an underlying program.

In fact, there have been many neural network frameworks
proposed recently for program induction or synthesis. First,
a variety of frameworks (Kaiser & Sutskever, 2016; Reed &
De Freitas, 2016; Xu et al., 2018; Devlin et al., 2017a) pro-
pose to induce latent representations of underlying programs.
While they can be efficient at mimicking desired behaviors,
they do not explicitly yield interpretable programs, resulting

1The illustrated environment is not tested in our experiments.
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in inexplicable failure cases. On the other hand, another line
of work (Devlin et al., 2017b; Bunel et al., 2018) directly
synthesize programs from input/output pairs, giving full
interpretability. While successful, the limited information
in the input/output pairs restricts applicability in synthesiz-
ing programs with rich expressibility. Hence, in this paper,
we develop a model that synthesizes programs from visu-
ally complex and sequential inputs that demonstrate more
branching conditions and long term effects, increasing the
complexity of the underlying programs.

To this end, we develop a program synthesizer augmented
with a summarizer module that is capable of encoding the
interrelationship between multiple demonstrations and sum-
marizing them into compact aggregated representations. In
addition, to enable efficient end-to-end training, we intro-
duce auxiliary tasks to encourage the model to learn the
knowledge that is essential to infer an underlying program.

We extensively evaluate our model in two environments:
a fully observable, third-person environment (Karel) and
a partially observable, egocentric game (ViZDoom). Our
experiments in both environments with a variety of settings
present the strength of explicitly modeling programs for
reasoning underlying conditions and the necessity of the
proposed components (the summarizer module and the aux-
iliary tasks).

In summary, in this paper, we introduce a novel problem of
program synthesis from diverse demonstration videos and a
method to address it. This substantially enables machines
to explicitly interpret decision making logic and interact
with humans. We also demonstrate that our algorithm can
synthesize programs reliably on multiple environments.

2. Related Work
Program Induction Learning to perform a specific task by
inducing latent representations of underlying task-specific
programs is known as program induction. Various ap-
proaches have been developed: designing end-to-end differ-
entiable architectures (Graves et al., 2014; 2016; Zaremba
& Sutskever, 2015; Kaiser & Sutskever, 2016; Joulin &
Mikolov, 2015; Grefenstette et al., 2015; Neelakantan et al.,
2015), learning to call subprograms using step-by-step su-
pervision (Reed & De Freitas, 2016; Cai et al., 2017), and
few-shot program induction (Devlin et al., 2017a). Contrary
to our work, those method do not return explicit programs.

Program Synthesis The line of work in program synthesis
focuses on explicitly producing programs that are restricted
to certain languages. (Balog et al., 2017) train a model to
predict program attributes and used external search algo-
rithms for inductive program synthesis. (Parisotto et al.,
2017; Devlin et al., 2017b) directly synthesize simple string
transformation programs. (Bunel et al., 2018) employ re-

Program m := def run() : s
Statement s := while(b) : (s) | s1; s2 | a | repeat(r) : (s)

| if(b) : (s) | ifelse(b) : (s1) else : (s2)

Repetition r := Number of repetitions
Condition b := percept | not b

Perception p := Domain dependent perception primitives
Action a := Domain dependent action primitives

Figure 2. Domain specific language for the program representation.
The program is composed of domain dependent perception and
action primitives and control flows.

inforcement learning to directly optimize the execution of
generated programs. However, those methods are limited to
synthesizing programs from input-output pairs, which sub-
stantially restricts the expressibility of the programs that are
considered; instead, we address the problem of synthesizing
programs from full demonstrations videos.

Imitation Learning The methods that are concerned with
acquiring skills from expert demonstrations, dubbed imita-
tion learning, can be split into behavioral cloning (Pomer-
leau, 1989; 1991; Ross et al., 2011) which casts the prob-
lem as a supervised learning task and inverse reinforcement
learning (Ng et al., 2000) that extracts estimated reward
functions given demonstrations. Recently, (Duan et al.,
2017; Finn et al., 2017; Xu et al., 2018) have studied the
task of mimicking given few demonstrations. This line of
work can be considered as program induction, as they imi-
tate demonstrations without explicitly modeling underlying
programs. While those methods are able to mimic given
few demonstrations, it is not clear if they could deal with
multiple demonstrations with diverse branching conditions.

3. Problem Overview
In this section, we define our formulation for program syn-
thesis from diverse demonstration videos. We define pro-
grams in a domain specific language (DSL) with perception
primitives, action primitives, and control flows. Action
primitives define the way that agents can interact with an en-
vironment, while perception primitives describe how agents
can percept it. Control flow can include if/else statements,
while loops, repeat statements, and simple logic operations.
An example of control flow introduced in (Pattis, 1981)
is shown in Figure 2. Note that we focus on perceptions
with boolean types in this paper, although a more generic
perception type constraint is possible.

A program η is a deterministic function that outputs an
action a ∈ A given a history of states at time step t, Ht =
(s1, s2, ..., st), where s ∈ S is a state of the environment.
The generation of an action given the history of states is
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Figure 3. Model Architecture. The demonstration encoder encodes each of the k demonstrations separately and the summarizer network
aggregates them to construct a summary vector. The summary vector is used by the program decoder to produce program tokens
sequentially. The encoded demonstrations are used to decode the action sequence and perception conditions as additional supervision.

represented as at = η (Ht). In this paper, we focus on
programs that can be represented in DSL by a code C =
(w1, w2, ..., wN ), which consists a sequence of tokens w.

A demonstration τ = ((s1, a1), (s2, a2), ..., (sT , aT )) is a
sequence of state and action tuples generated by an under-
lying program η∗ given an initial state s1. Given an initial
state s1 and its corresponding state history H1, the program
generates new action a1 = η∗ (H1). The following state s2
is generated by a state transition function T : s2 ∼ T (s1, a1).
The newly sampled state is incorporated into the state his-
tory H2 = H1

a (s2) and this process is iterated until the
end of file action EOF ∈ A is returned by the program.
A set of demonstrations D = {τ1, τ2, ..., τK} can be gen-
erated by running a single program η∗ on different initial
states s11, s

2
1, ..., s

K
1 , where each initial state is sampled from

an initial state distribution (i.e. sk1 ∼ P0(s1)).

While we are interested in inferring a program η∗ from a
set of demonstrations D, it is preferable to predict a code
C∗ instead, because it is a more accessible representation
while immediately convertible to a program. Formally, we
formulate the problem as a sequence prediction where the
input is a set of demonstrations D and the output is a code
sequence Ĉ. Note that our objective is not about inferring a
code perfectly but instead generating a code that can infer
the underlying program, which models the diverse behaviors
appearing in the demonstrations in an executable form.

4. Approach
Inferring a program behind a set of demonstrations requires
(1) interpreting each demonstration video (2) spotting and
summarizing the difference among demonstrations to infer
the conditions behind the taken actions (3) describing the un-
derstanding of demonstrations in a written language, Based
on this intuition, we design a neural architecture composed
of three components:

• Demonstration Encoder receives a demonstration
video as input and produces an embedding that cap-
tures an agent’s actions and perception.

• Summarizer Module discovers and summarizes
where actions diverge between demonstrations and
upon which branching conditions subsequent actions
are taken.

• Program Decoder represents the summarized under-
standing of demonstrations as a code sequence.

The details of the three main components are described in
the Section 4.1, and the learning objective of the proposed
model is described in Section 4.2. Section 4.3 introduces
auxiliary tasks for encouraging the model to learn the knowl-
edge that is essential to infer a program.

4.1. Model Architecture

Figure 3 illustrates the overall architecture of the proposed
model, The details of each component are described in the
following sections.

4.1.1. DEMONSTRATION ENCODER

The demonstration encoder receives a demonstration video
as input and produces an latent vector that captures the
actions and perception of an agent. At each time step, to
interpret visual input, we employ a stack of convolutional
layers, to encode a state st to its embedding as a state vector
vtstate = CNNenc(st) ∈ Rd, where t ∈ [1, T ] is the time-step.

Since the demonstration encoder needs to handle demon-
strations with variable numbers of frames, we employ an
LSTM (Long Short Term Memory) (Hochreiter & Schmid-
huber, 1997) to encode each state vector and summarized
representation at the same time.

ctenc, h
t
enc = LSTMenc(v

t
state, c

t−1
enc , h

t−1
enc ), (1)
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where, t ∈ [1, T ] is the time step, while ctenc and htenc denote
the cell state and the hidden state. While final state tuples
(cTenc, h

T
enc) encode the overall idea of the demonstration,

intermediate hidden states {h1enc, h
2
enc, ..., h

T
enc} contain high

level understanding of each state, which are used as an input
to the following modules. Note that these operations are
applied to allK demonstrations while the index k is dropped
in the equations for simplicity.

4.1.2. SUMMARIZER MODULE

Inferring an underlying program from demonstrations that
exhibits different behaviors requires the ability to discover
and summarize where actions diverge between demonstra-
tions and upon which branching conditions subsequent ac-
tions are taken. The summarizer module first re-encodes
each demonstration with the context of all encoded demon-
strations to infer branching conditions. Then, the module
aggregates all encoded demonstration vectors to obtain the
summarized representation. An illustration of the summa-
rizer is shown in Figure 4.

The first summarization is performed by a reviewer module,
an LSTM initialized with the average-pooled final state
tuples of the demonstration encoder outputs, which can be
written as follows:

c0review =
1

K

K∑
k=1

cT,kenc , h0review =
1

K

K∑
k=1

hT,kenc , (2)

where (cT,kenc , h
T,k
enc ) is the final state tuple of the kth demon-

stration encoder. Then the reviewer LSTM encodes the
hidden states by

ct,kreview, h
t,k
review = LSTMreview(ht,kenc, c

t−1,k
review , h

t−1,k
review ), (3)

where the final hidden state becomes a demonstration vec-
tor vkdemo = hT,kreview ∈ Rd, which includes the summarized
information within a single demonstration.

The final summarization, which is performed across multi-
ple demonstrations, is performed by an aggregation module,
which gets K demonstration vectors and aggregates them
into a single compact vector representation. To effectively
model complex relations between demonstrations, we em-
ploy a relational network (RN) module (Santoro et al., 2017).
The aggregation process is formally written as follows.

vsummary = RN
(
v1demo, ..., v

K
demo

)
=

1

K2

K∑
i,j

gθ(v
i
demo, v

j
demo),

(4)
where vsummary ∈ Rd is the summarized demonstration vec-
tor and gθ is an MLP parameterized by θ jointly trained with
the summarizer module.

We show that employing the summarizer module signifi-
cantly alleviates the difficulty of handling multiple demon-
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Figure 4. Summarizer Module. The demonstration encoder (inner
layer) encodes each demonstration starting from a zero state. The
summarizer module (outer layer) aggregates the outputs of the
demonstration encoder with a relation network to provide context
from other demonstrations.

strations and improve generalization over different number
of generations in Section 5 .

4.1.3. PROGRAM DECODER

The program decoder synthesizes programs from a sum-
marized representation of all the demonstrations. We use
LSTMs similar to (Sutskever et al., 2014; Vinyals et al.,
2015) as a program decoder. Initialized with the summa-
rized vector vsummary, the LSTM at each time step gets the
previous token embedding as an input and outputs a prob-
ability of the following program tokens as in the Eq. 5.
During training, the previous ground truth token is fed as
an input, and during inference, the predicted token in the
previous steps is fed as an input.

4.2. Learning

The proposed model learns a conditional distribution be-
tween a set of demonstrations D and a corresponding code
C = {w1, w2, ..., wN}. By employing the LSTM program
decoder, this problem becomes an autoregressive sequence
prediction (Sutskever et al., 2014). For a given demonstra-
tion and previous code token wi−1, our model is trained
to predict the following ground truth token w∗

i , where the
cross entropy loss is optimized.

Lcode = − 1

NM

M∑
m=1

N∑
n=1

log p(w∗
m,n|Wm

m,n−1, Dm), (5)

where M is the total number of training examples, wm,n is
the nth token of the mth training example and Dm are mth
training demonstrations. Wm,n = {wm,1, ..., wm,n} is the
history of previous token inputs at time step n.
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4.3. Multi-task Objective

To reason an underlying program from a set of demonstra-
tions, the primary and essential step is recognizing actions
and perceptions happening in each step of the demonstration.
However, it can be difficult to learn meaningful represen-
tations solely from the sequence loss of programs when
environments increase in visual complexity. To alleviate
this issue, we propose to predict action sequences and per-
ception vectors from the demonstrations as auxiliary tasks.
An overview of the auxiliary tasks are illustrated in Figure 3.

Predicting action sequences Given a demo vector vkdemo
encoded by the summarizer, an action decoder LSTM pro-
duces a sequence of actions. During training, a sequential
cross entropy loss similar to Equation 5 is optimized:

Laction = − 1

MKT

M∑
m=1

K∑
k=1

T∑
t=1

log p(ak∗m,t|Akm,t−1, v
k
demo),

(6)
where, akm,t is the t-th action token in k−th demonstration
of m-th training example, Akm,t = {akm,1, ..., akm, t} is the
history of previous actions at time step t.

Predicting perceptions We denote a perception vector
Φ = {φ1, ..., φL} ∈ {0, 1}L as an L dimensional binary
vector obtained by executing L perception primitives e.g.
frontIsClear() on a given state s. Specifically, we
formulate the perception vector prediction as a sequential
multi-label binary classification problem and optimizes the
binary cross entropy:

Lperception =

− 1

MKTL

M∑
m=1

K∑
k=1

T∑
t=1

L∑
l=1

log p(φk∗m,t,l|P km,t−1, v
k
demo),

(7)

where P km,t = {f(Φkm,1), ..., f(Φkm,t)} is the history of
encoded previous perception vectors and f(·) is an encoding
function.

The aggregated multi-task objective is as follows: L =
Lcode + αLaction + βLperception, where α and β are hyper-
parameters controlling the importance of each loss. We set
α = β = 1 to equally optimize the objectives for all the
experiments.

5. Experiments
We perform experiments in different environments:
Karel (Pattis, 1981) and ViZDoom (Kempka et al., 2016).
We first describe the experimental setup and then present
the experimental results.

5.1. Evaluation Metric

To verify whether a model is able to infer an underlying pro-
gram η∗ from a given set of demonstrations D, we evaluate
accuracy based on the synthesized codes and the underlying
program (sequence accuracy and program accuracy) as well
as the execution of the program (execution accuracy).

Sequence accuracy Comparison in the code space is
based on the instantiated code C∗ of a ground truth pro-
gram and the synthesized code Ĉ from a program synthe-
sizer. The sequence accuracy counts exact match of two
code sequences, which is formally written as: Accseq =
1
M

∑M
m=1 1seq(C∗

m, Ĉm), where M is the number of test-
ing examples and 1seq(·, ·) is the indicator function of exact
sequence match.

Program accuracy While the sequence accuracy is
simple, it is a pessimistic estimation of program ac-
curacy since it does not consider program aliasing
– different codes with identical program semantics
(e.g. repeat(2):(move()) and move() move()).
Therefore, we measure the program accuracy by enumer-
ating variations of codes. Specifically, we exploit the syn-
tax of DSL to identify variations: e.g. unfolding repeat
statements, decomposing if-else statement into two if state-
ments, etc. Formally, the program accuracy is Accprogram =
1
M

∑M
m=1 1prog(C∗

m, Ĉm), where 1prog(C∗
m, Ĉm) is an in-

dicator function that returns 1 if any variations of Ĉm match
any variations of C∗

m. Note that the program accuracy is
only computable when the DSL is relatively simple and
some assumptions are made i.e. termination of loops. The
details of computing program accuracy are presented in the
supplementary material.

Execution accuracy To evaluate how well a synthesized
program can capture the behaviors of an underlying pro-
gram, we compare the execution results of the synthe-
sized program code Ĉ and the demonstrations D∗ gener-
ated by a ground truth program η∗, where both are gen-
erated from the same set of sampled initial states IK =
{s11, ..., sK1 }. We formally define the execution accuracy
as: Accexecution = 1

M

∑M
m=1 1execution(D∗

m, D̂m), where
1execution(D∗

m, D̂m) is the indicator function of exact se-
quence match. Note that when the number of sampled ini-
tial states becomes infinitely large, the execution accuracy
converges to the program accuracy.

5.2. Evaluation Setting

For training and evaluation, we collect Mtrain training pro-
grams and Mtest test programs. Each program code C∗

m

is randomly sampled from an environment specific DSL
and compiled into an executable form η∗m. The corre-
sponding demonstrations D∗

m = {τ1, ..., τK} are gener-
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def run():
while frontIsClear():
move()

putMarker()
turnLeft()
move()
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move()
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Underlying Program Synthesized Program
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def run():
turnRight()
turnRight()
while frontIsClear():
move()

if markersPresent():
turnLeft()
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else:
turnRight()

def run():
turnRight()
turnRight()
while frontIsClear():
move()

else:
turnRight()

Figure 5. Karel Results. Seen training examples are on top row (in blue) and unseen testing examples are on the bottom row (in green). (a)
A successful case with a program sequence match (b) Due to a missing branch condition execution in training data (top images), the
synthesized program doesn’t incorporate the condition, resulting in execution mismatch in lower right testing image.

ated by running the program on K = Kseen + Kunseen
different initial states. The seen demonstrations are used
as an input to the program synthesizer, and the unseen
demonstrations are used for computing execution accu-
racy. We train our model on the training set Ωtrain =
{(C∗

1 , D
∗
1), ..., (C∗

Mtrain
, D∗

Mtrain
)} and test them on the test-

ing set Ωtest = {(C∗
1 , D

∗
1), ..., (C∗

Mtest
, D∗

Mtest
)}. Note that

Ωtrain and Ωtest are disjoint. Both sequence and execution
accuracies are used for the evaluation. The training details
are described in the supplementary material.

5.3. Baselines

We compare our proposed model (ours) against baselines
to evaluate the effectiveness of: (1) explicitly modeling the
underlying programs (2) our proposed model with the sum-
marizer module and multi-task objective. To address (1), we
design a program induction baseline based on (Duan et al.,
2017), which bypasses synthesizing programs and directly
predicts action sequences. We modified the architecture to
incorporate multiple demonstrations as well as pixel inputs.
The details are presented in the supplementary material. For
a fair comparison with our model that gets supervision of
perception primitives, we feed the perception primitive vec-
tor of every frame as an input to the induction baseline . To
verify (2), we compose a program synthesis baseline sim-
ply consisting of a demonstration encoder and a program
decoder without a summarizer module and multi-task loss.
To integrate all the demonstration encoder outputs across
demos, an average pooling layer is applied.

5.4. Karel

We first focus on a visually simple environment to verify the
feasibility of program synthesis from demonstrations. We
consider Karel (Pattis, 1981) featuring an agent navigating
through a gridworld with walls and interacting with markers

based on the underlying program.

5.4.1. ENVIRONMENT AND DATASET

Karel has 5 action primitives for moving and interacting
with markers and 5 perception primitives for detecting ob-
stacles and markers. A gridworld of 8× 8 size is used for
our experiments. To evaluate the generalization ability of
the program synthesizer to novel programs, we randomly
generate 35,000 unique programs and split them into a train-
ing set with 25,000 program, a validation set with 5,000
program, and a testing set with 5,000 programs. The maxi-
mum length of the program codes is 43. For each program,
10 seen demonstrations and 5 unseen demonstrations are
generated. The maximum length of the demonstrations is
20.

Methods Execution Program Sequence
Induction baseline 62.8% (69.1%) - -
Synthesis baseline 64.1% 42.4% 35.7%

+ summarizer (ours) 68.6% 45.3% 38.3%
+ multi-task loss (ours-full) 72.1% 48.9% 41.0%

Table 1. Performance evaluation on Karel environment. Synthesis
baseline outperforms induction baseline . The summarizer module
and the multi-task objective introduce significant improvement.

5.4.2. PERFORMANCE EVALUATION

The evaluation results of our proposed model and base-
lines are shown in Table. 1. Comparison of execution ac-
curacy shows relative performance of the proposed model
and the baselines. Synthesis baseline outperforms induction
baseline based on the execution accuracy, which shows the
advantage of explicit modeling the underlying programs. In-
duction baseline often matches some of the Kunseen demon-
stration, but fails to match all of them from a single pro-
gram. This observation is supported by the number in the
parenthesis (69.1%), which counts the number of correct
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demonstrations while execution accuracy counts the number
of program whose demonstrations match perfectly. This
finding has also been reported in (Devlin et al., 2017b).

The proposed model shows consistent improvement over
synthesis baseline for all the evaluation metrics. The se-
quence accuracy for our full model is 41.0%, which is a rea-
sonable generalization performance given that none of the
test programs are seen during training. We observe that our
model often synthesizes programs that do not exactly match
with the ground truth program but are semantically identical.
For example, given a ground truth program repeat(4):(
turnLeft; turnLeft; turnLeft ), our model
predicts repeat (12): ( turnLeft ). These
cases are considered correct for program accuracy. Note
that comparison based on the execution and sequence accu-
racy is consistent with the program accuracy, which justifies
using them as a proxy for the program accuracy when it is
not computable.

The qualitative success and failure cases of the proposed
model are described in Figure 5. The Figure 5(a) shows
a correct case where a single program is used to gener-
ate diverse action sequences. Figure 5(b) show a failure
case, where part of the ground truth program tokens are not
generated due to missing seen demonstration hitting that
condition.

Methods k=3 k=5 k=10
Synthesis baseline 58.5% 60.1% 64.1%

+ summarizer (ours) 60.6% 63.1% 68.6%
Improvement 2.1% 3.0% 4.5%

Table 2. Effect of the summarizer module. Employing the pro-
posed summarizer module brings more improvement as the number
of seen demonstration increases over synthesis baseline .

5.4.3. EFFECT OF SUMMARIZER

To verify the effectiveness of our proposed summarizer mod-
ule, we conduct experiments where models are trained on
varying numbers of demonstrations and compare the execu-
tion accuracy in Table. 2. As the number of demonstrations
increases, both models enjoy a performance gain due to
extra available information. However, the gap between our
proposed model and synthesis baseline also grows, which
demonstrates the effectiveness of our summarizer module.

5.5. ViZDoom

Doom is a 3D first-person shooter game where a player
can move in a continuous space and interact with monsters,
items and weapons. We use ViZDoom (Kempka et al.,
2016), an open-source Doom-based AI platform, for our
experiments. ViZDoom’s increased visual complexity and a
richer DSL could test the boundary of models in state com-
prehension, demo summarization, and program synthesis.

5.5.1. ENVIRONMENT AND DATASET

The ViZDoom environment has 7 action primitives includ-
ing diverse motions and attack as well as 6 perception
primitives checking the existence of different monsters and
whether they are targeted. Each state is represented by an
image with 120× 160× 3 pixels. For each demonstration,
initial state is sampled by randomly spawning different types
of monsters and ammos in different location and placing
an agent randomly. To ensure that the program behavior
results in the same execution, we control the environment
to be deterministic.

We generate 80,000 training programs and 8,000 testing pro-
grams. To encourage diverse behavior of generated program,
we give a higher sampling rate to the perception primitives
that has higher entropy over K different initial states. We
use 25 seen demonstrations for program synthesis and 10
unseen demonstrations for execution accuracy measure. The
maximum length of programs is 32 and the maximum length
of demonstrations is 20.

5.5.2. PERFORMANCE EVALUATION

Table. 3 shows the result on ViZDoom environment. Syn-
thesis baseline outperforms induction baseline in terms of
the execution accuracy, which shows the strength of pro-
gram synthesis for understanding diverse demonstrations.
In addition, the proposed summarizer module and the multi-
task objective bring improvement in terms of all evaluation
metrics. Also we found that the syntax of the synthesized
programs is about 99.9% accurate. This tells that the pro-
gram synthesizer correctly learn the syntax of the DSL.

Figure 6 shows the qualitative result. It is shown that the
generated program covers different conditional behavior in
the demonstration successfully. In the example, the synthe-
sized program does not match the underlying program in
the code space, while matching the underlying program in
the program space.

Methods Execution Program Sequence
Induction baseline 35.1% (60.6%) - -
Synthesis baseline 48.2% 39.9% 33.1%
Ours-full 78.4% 62.5% 53.2%

Table 3. Performance evaluation on ViZDoom environment. The
proposed model outperforms induction baseline and synthesis base-
line significantly as the environment is more visually complex.

5.5.3. ANALYSIS

To verify the importance of inferring underlying conditions,
we perform evaluation only with programs containing a sin-
gle if-else statement with two branching consequences. This
setting is sufficiently simple to isolate other diverse factors
that might affect the evaluation result. For the experiment,
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Underlying  Program

inTarget HellKnight 
! attack()

inTarget HellKnight not inTarget Demon 
! moveRight()

Demo 1

inTarget HellKnight and 
inTarget Demon

inTarget HellKnight 
! attack()

inTarget Demon 
! attack()

Demo 2

def run():
if inTarget HellKnight:
attack()

if inTarget Demon:
  attack()
else:
  moveRight()

def run():
if inTarget HellKnight:
attack()

if not inTarget Demon:
  moveRight()
else:
  attack()

Synthesized  Program

Figure 6. ViZDoom results. Annotations below frames are the perception conditions and actions. Hellknight, Revenant, and Demon
monsters are white, black, and pink respectively. The model is able to correctly percepts the condition and actions as well as synthesize a
precise program. Note that the synthesized and the underlying program are semantically identical.

Methods Execution Program Sequence
Induction baseline 26.5% (83.1%) - -
Synthesis baseline 59.9% 44.4% 36.1%
Ours-full 89.4% 69.1% 58.8%

Table 4. If-else experiment on ViZDoom environment. Single if-
else statement with two branching consequences is used to evaluate
ability of inferring underlying conditions.

we use 25 seen demonstrations to understand a behavior and
10 unseen demonstrations for testing. The result is shown in
Table. 4. Induction baseline has difficulty inferring the un-
derlying condition to match all unseen demonstrations most
of the times. In addition, our proposed model outperforms
synthesis baseline ,2 which demonstrates the effectiveness
of the summarizer module and the multi-task objective.

Figure 7 illustrates how models trained with a fixed number
(25) of seen demonstration generalize to fewer or more seen
demonstrations during testing time. This shows our model
and synthesis baseline are able to leverage more seen demon-
strations to synthesize more accurate programs as well as
achieve reasonable performance when fewer demonstrations
are given. On the contrary, Induction baseline could not
exploit more than 10 demonstrations well.

5.5.4. DEBUGGING THE SYNTHESIZED PROGRAM

One of the intriguing properties of the program synthesis is
that synthesized programs are interpretable and interactable
by human. This makes it possible to debug a synthesized
program and fix minor mistakes to correct the behaviors. To
verify this idea, we use edit distance between synthesized
program and ground truth program as a number of minimum
token that is required to get a exactly correct program. With

Figure 7. Generalization over different number of Kseen. The base-
line models and our model trained with 25 seen demonstration are
evaluated with fewer or more seen demonstrations.

this setting, we found that fixing at most 2 program token
provides 4.9% improvement in sequence accuracy and 4.1%
improvement in execution accuracy.

6. Conclusion
We propose the task of synthesizing a program from di-
verse demonstration videos. To address this, we introduce a
model augmented with a summarizer module to deal with
branching conditions and a multi-task objective to induce
meaningful latent representations. Our method is evalu-
ated on a fully observable, third-person environment (Karel
environment) and a partially observable, egocentric game
(ViZDoom environment). The experiments demonstrate
that the proposed model is able to reliably infer underlying
programs and achieve satisfactory performances.
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Toczek, Jakub, and Jaśkowski, Wojciech. Vizdoom: A
doom-based ai research platform for visual reinforce-
ment learning. In Computational Intelligence and Games,
2016.

Neelakantan, Arvind, Le, Quoc V, and Sutskever, Ilya. Neu-
ral programmer: Inducing latent programs with gradient
descent. In International Conference on Learning Repre-
sentations, 2015.

Ng, Andrew Y, Russell, Stuart J, et al. Algorithms for in-
verse reinforcement learning. In International Conference
on Machine Learning, 2000.

Parisotto, Emilio, Mohamed, Abdel-rahman, Singh,
Rishabh, Li, Lihong, Zhou, Dengyong, and Kohli, Push-
meet. Neuro-symbolic program synthesis. In Interna-
tional Conference on Learning Representations, 2017.

Pattis, Richard E. Karel the robot: a gentle introduction to
the art of programming. John Wiley & Sons, Inc., 1981.

Pomerleau, Dean A. Alvinn: An autonomous land vehicle
in a neural network. In Neural Information Processing
Systems, 1989.

Pomerleau, Dean A. Efficient training of artificial neural net-
works for autonomous navigation. Neural Computation,
1991.

Reed, Scott and De Freitas, Nando. Neural programmer-
interpreters. In International Conference on Learning
Representations, 2016.
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