Execute

Learning to Synthesize **Programs** as Interpretable and Generalizable Reinforcement Learning Policies

Shao-Hua Sun (孫紹華)

Assistant Professor Dept. of Electrical Engineering (EE) National Taiwan University

Machine Learning Summer Schools 2024 @ OIST

Program

```
DEF run() m(
   WHILE c( markerPresent c) w(
       WHILE c( markerPresent c) w(
           pickMarker
           move w)
       turnRight
       move
       turnLeft
       WHILE c( markerPresent c) w(
           pickMarker
           move w)
       turnLeft
       move
        turnRight w) m)
```


Demonstrations

Why Aren't Robots in Our Everyday Lives?

Google Robotics

ad24

Machine Learning

Robot Learning

Image Classification

Model	image size	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V2 [29]	224×224	11.2 M	1.94 B	74.8	92.2
NASNet-A (5 @ 1538)	299×299	10.9 M	2.35 B	78.6	94.2
Inception V3 [60]	299×299	23.8 M	5.72 B	78.8	94.4
Xception [9]	299×299	22.8 M	8.38 B	79.0	94.5
Inception ResNet V2 [58]	299×299	55.8 M	13.2 B	80.1	95.1
NASNet-A (7 @ 1920)	299×299	22.6 M	4.93 B	80.8	95.3
ResNeXt-101 (64 x 4d) [68]	320×320	83.6 M	31.5 B	80.9	95.6
PolyNet [69]	331×331	92 M	34.7 B	81.3	95.8
DPN-131 [8]	320×320	79.5 M	32.0 B	81.5	95.8
SENet [25]	320×320	145.8 M	42.3 B	82.7	96.2
NASNet-A (6 @ 4032)	331×331	88.9 M	23.8 B	82.7	96.2

Table 2. Performance of architecture search and other published state-of-the-art models on ImageNet classification. Mult-Adds indicate the number of composite multiply-accumulate operations for a single image. Note that the composite multiple-accumulate operations are calculated for the image size reported in the table. Model size for [25] calculated from open-source implementation.

Zoph et al. Learning Transferable Architectures for Scalable Image Recognition

Instance Segmentation

Figure 5. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1). He et al. Mask R-CNN

Machine Translation

^{*}The reason Boeing are doing this is to cram more seats in to make their plane more Source competitive with our products,^{*} said Kevin Keniston, head of passenger comfort at Europe's Airbus. ^{*}La raison pour laquelle Boeing sont en train de faire, c'est de concentrer davantage de

- *La raison pour laquelle Boeing sont en train de faire, c'est de concentrer davantage de PBMT sikges pour prendre heur avion phis compétitive avec nos produits', a déclaré Kevin M. 3.0 Keniston, chef du confort des passagers de l'Airbus de l'Europe. 'La raison pour laquelle Boeing fait cela est de créer plus de sièges pour rendre son GNMT avion plus compétitif avec nos produits', a déclaré Kevin Keniston, chef du confort des 6.0 passagers chez Airbus. 'Boeing fait ça pour pouvoir caser plus de sièges est endre ses avions plus compétitifs Human par rapports à nos produits', a déclaré Kevin Keniston, directeur de Confort Passager 6.0 chez l'avionneur européen Airbus.
 When asked about this, an official of the American administration replied: 'The United Source States is not conducting electronic surveillance and the Back and

- When asked about this, an official of the American administration replied: "The United

 Source Statust is not conducting electronic surveillance aimed at offices of the World Bank and IMF in Washington."

 Interrogé A ce sujet, un responsable de l'administration américaine a répondu : "Les

 PBMT Etats-Unis n'est pase effectuer une surveillance électronique destiné aux bureaux de la 3.0 Banque mondiale et du FMI à Washington".

 Interrogé à ce sujet, un fonctionnier de l'administration américaine a répondu: "Les

 GNMT États-Unis n'effectuent pas de surveillance électronique à l'intention des bureaux de la 6.0 Banque mondiale et du FMI à Washington".

 Interrogé sur le sujet, un responsable de l'administration américaine a répondu: "les

 Human Etats-Unis ne mènent pas de surveillance électronique visant les sièges de la Banque mondiale et du FMI à Washington".

 Human Etats-Unis ne mènent pas de surveillance électronique visant les sièges de la Banque mondiale et du FMI à Washington".

- mondiale et du FMI à Washington".

Wu et al. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Question Answering

Input Question:

Input Paragraph:

· Output Answer: within a cloud

	System	D	ev	Te	st
		EM	F1	EM	F1
	Leaderboard (Oct	8th, 2	018)		
	Human	-	-	82.3	91.2
	#1 Ensemble - nInet	-	-	86.0	91.7
put Question:	#2 Ensemble - QANet	-	-	84.5	90.5
ne de ueten develete sellide udet des	#1 Single - nlnet	-	-	83.5	90.1
are do water dropiets collide with ice	#2 Single - OANet	-	-	82.5	89.3
stals to form precipitation?	Publishe	d			
nut Dara ananhi	BiDAF+ELMo (Single)		85.8		-
but Paragraph:	R.M. Reader (Single)	78.9	86.3	79.5	86.6
Precipitation forms as smaller droplets	R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
lesce via collision with other rain drops	Ours				
ice crystals within a cloud	BERTBASE (Single)	80.8	88.5	-	-
	BERTLARGE (Single)	84.1	90.9	-	-
utput Answer:	BERTLARGE (Ensemble)	85.8	91.8	-	-
this a should	BERTLARGE (Sgl.+TriviaOA)	84.2	91.1	85.1	91.8
inin a cioud	BERTLARGE (Ens.+TriviaOA)	86.2	92.2	87.4	93.2

systems which use different pre-training checkpoints and fine-tuning seeds.

Word Embeddings

contentSkip to site index
Who Criticized Trump
investigation after his dis
TimesBy Adam Goldman
PERSON , the F.B.I.
oversee the Hillary Cir
said Monday DATE
Lisa Page — in PERM
DATE at the F.B.I. O
inquiry.Along with writing
F.B.I. OPE had been
DATE from the staff of

On word embeddings - Part 1 by Ruder

Speech Recognition

Speech Synthesis (text-to-speech)

		Word Error Rate						
Senone set	Model/combination step	WER	WER	WER	WER			
	-	devset	test	devset	test			
		ngran	n-LM	LSTM	-LMs			
9k	BLSTM	11.5	8.3	9.2	6.3			
27k	BLSTM	11.4	8.0	9.3	6.3			
27k-puhpum	BLSTM	11.3	8.0	9.2	6.3			
9k	BLSTM+ResNet+LACE+CNN-BLSTM	9.6	7.2	7.7	5.4			
9k-puhpum	BLSTM+ResNet+LACE	9.7	7.4	7.8	5.4			
9k-puhpum	BLSTM+ResNet+LACE+CNN-BLSTM	9.7	7.3	7.8	5.5			
27k	BLSTM+ResNet+LACE	10.0	7.5	8.0	5.8			
-	Confusion network combination			7.4	5.2			
-	+ LSTM rescoring			7.3	5.2			
-	+ ngram rescoring			7.2	5.2			
-	+ backchannel penalty			7.2	5.1			

Visual Question Answering

		VQA v21	VQA v2 test-std					
Method	All	Yesto	Numb	Other	All	Yesto	Numb	Other
Prior (most common answer in training set) [14]					25.98	61.20	0.36	1.17
LSTM Language only (blind model) [14]					44.26	67.01	31.55	27.37
Deeper LSTM Q norm, 1173 as reported in [14]	-	-	-	-	54.22	73.46	35.18	41.83
MCB [13] as reported in [14]	-	-	-	-	62.27	78.82	38.28	53.30
UPMC-LIP6 [7]					65.71	82.07	41.06	57.12
Adena					67.59	82.50	44.19	59.97
LV-NUS					66.77	81.89	46.29	58.30
HDU-USYD-UNCC	-	-	-	-	68.09	84.50	45.39	29.0
Proposed model								
ResNet features 7x7, single network	62.07	79.20	39.45	52.62	62.27	79.32	39.77	52.5
Image Seatures from bottom-up attention, adaptive K, single network	65.32	81.82	44.21	55.05	65.67	\$2.20	43.90	55.26
ResNet features 7×7, ensemble	66.34	\$3.38	43.17	57.10	66.73	83.71	43.77	57.20
Image features from bottom-up attention, adaptive K, ensemble	69.87	86.05	48,99	68,99	70.34	86.60	48.64	61.13

Teney et al. Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge

Named Entity Recognition

Named Entity Recognition and Classification with Scikit-Learn by Susan Li Esteves et al. Named Entity Recognition in Twitter using Images and Text

Van Den Oord et al. WaveNet: A Generative Model for Raw Audio

9k-puhpum

+ ngram rescoring + backchannel penalty

	System	D	ev	Te	st
		$\mathbb{E}M$	F1	EM	F1
	Leaderboard (Oct	8th, 2	2018)		
	Human			82.3	91.3
	#1 Ensemble - nInet	-	-	86.0	91.
	#2 Ensemble - QANet	-	-	84.5	90.
	#1 Single - nlnet			83.5	90.
.68	#2 Single - QANet	-		82.5	89,
	Publishe	d			
	BiDAF+ELMo (Single)		85.8		
	R.M. Reader (Single)	78.9	86.3	79.5	86.
oplets	R.M. Reader (Ensemble)	81.2	87.9	82.3	88.
drops	Ours				
	BERTRASE (Single)	80.8	88.5	-	-
	BERTLARGE (Single)	84.1	90.9	-	-
	BERTLARCE (Ensemble)	85.8	91.8	-	-
	BERTLARGE (Sgl.+TriviaOA)	84.2	91.1	85.1	91.3
	BERTLARCE (Ens.+TriviaOA)	86.2	92.2	87.4	93.

· Output Answer:

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

Deviin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

		VQU v21	zst-dev	VQA v2 test-std.				
Method	All	Yestro	Numb	Other	All	Yes/eo	Nunb	Other
Prior (most common answer in training sot) [14]					25.98	61.20	0.36	
LSTM Language only (blind model) [14]					44.26	67.01	31.55	27,37
Deeper LSTM Q norm, 1171 as reported in [14]					54.22	73.46	35.18	41.87
MCB [13] as reported in [14]					62.27	78.82	38.28	53,36
UPMC-LIP6 [7]					65.71	82.07	-41.06	
Adem					67.59	82.50	44.19	59.97
LV-NUS					65.77	81.89	46.29	58.30
HDU-USYD-UNOC					68.09	84.50	45.39	59.01
Proposed medel								
ResNet features 7x7, single network	62.07	79.20	39.45	52.62	62.27	79.32	39.77	52.55
Image Statures from bottom-up attention, adaptive K, single network	65.32	81.82	44.21	55.05	65.67	82.20	45.90	55.26
ResNet features 7×7, execuble	66.34	\$3.38	43.17	57.10	66.73	83.71	43.77	57.20
Image features from bottom-up attention, adaptive K, ensemble	69.87	86.08	48,99	68,90	70.34	86.60	48.64	61.15

and fine-tuning seeds.

Deviin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

		VQA v2 i	est-dev			VQA+2	test-std.	
Method	All	Yestro	Numb.	Other	All	Yes/eo	Numb	Othe
Prior (most common answer in training set) [14]					25.98	61.20	0.36	
LSTM Language only (blind model) [14]					44.26	67.01	31.55	27,37
Deeper LSTM Q norm, 1[7] as reported in [14]					54.22	73.46	35.18	41.83
MCB [13] as reported in [14]					62.27	78.82	38.28	53.36
UPMC-LIP6 [7]					65.71	82.07	-41.06	
Afteni					67.59	82.50	44.19	39.97
LV-NUS					65.77	81.89	46.29	58.30
HDU-USYD-UNOC					68.09	84.50	45.39	29.01
Proposal model								
ResNet features 7x7, single network	62.07	79.20	39.45	52.62	62.27	79.32	39.77	52.5
Image Statures from bottom-up attention, adaptive K, single network	65.32	81.82	44.21	55.05	65.67	\$2.20	45.90	55.26
ResNet features 7×7, ensemble	66.34	\$3.38	43.17	57.10	66.73	83.71	43.77	57.20
Image features from bottom-up attention, adaptive K, ensemble	69.87	86.08	48,99	68,99	70.34	85.60	48.64	61.13

systems which use different pre-training checkpoints and fine-tuning seeds. Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Table 2: SQuAD results. The BERT ensemble is 7x

Visual Question Answering

I			VQU v21	est-dev			VQA v2	test-std	
	Method	All	Yestro	Numb	Other	All	Yes/eo	Numb	Othe
	Prior (most common answer in training set) [14]					25.98	61.20	0.36	
	LSTM Language only (blind model) [14]					44.26	67.01	31.55	27.3
	Deeper LSTM Q norm, 1171 as reported in [14]					54.22	73.46	35.18	41.83
	MCB [13] as reported in [14]					62.27	78.82	38.28	53.30
	UPMC-LIP6 [7]					65.71	82.07	-41.06	
	Afteni					67.59	82.50	44.19	59.97
	LV-NU8					65.77	81.89	46.29	58.30
	HDU-USYD-UNOC					68.09	84,50	45.39	29.0
	Propried model								
	ResNet features 7x7, single network	62.07	79.20	39.45	52.62	62.27	79.32	39.77	52.5
1	Image Seatures from bettern-up attention, adaptive K, single network	65.32	81.82	44.21	55.05	65.67	82.20	45.90	55.20
	ResNet features 7×7, execuble	66.34	\$3.38	43.17	57.10	66.73	83.71	43.77	57.20
	Image features from bottom-up attention, adaptive K, ensemble	69,87	SLES	48,99	68,89	70.34	85.60	48.64	61.13

French sentence

la france est jamais froid en septembre

oversee the Hilary Clinton PERSON email and Russia GPE investigations, has been fired for violating burnau policies, Mr. Strzok PERSON 's said Monday DATE Mr. Trump and his alies seized on the taxts -- exchanged during the 2016 DATE campaign with a former FB1 GPE lawyer Lisa Page ---- in PERSON assailing the Russia GPE investigation as an illegitmate "witch hunt." Mr. Strzok PERSON , who rose over 20 years DATE at the F.B.I. OPE to become one of its most experienced counterintelligence agents, was a key figure in the early months DATE of the inquiry Along with writing the texts, Mr. Strzek PERSON was accused of sending a highly sensitive search warrant to his person F.B.I. OPE had been under immense political pressure by Mr. Trump PERSON to dismiss Mr. Strzek PERSON , who was removed last summer DATE from the staff of the special counsel, Robert S. Mueller III PERSON . The president has repeatedly denounced Mr. Strzek PERSON in posts

Speech Synthesis (text-to-speech)

· Output Answer:

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

Ours

 DELKI pase (Single)
 80.8
 85.7

 BERT_LARGE (Single)
 84.1
 90.9

 BERT_LARGE (Single)
 85.8
 91.8

 BERT_LARGE (Sigle+TriviaQA)
 84.2
 91.1
 85.1
 91.8

 BERT_LARGE (Ens.+TriviaQA)
 86.2
 92.2
 87.4
 93.2

BERTRASE (Single)

80.8 88.5 -

Deviin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

 BLS1M+ResNetH_ACE+CNN-BLS1M
 9.6
 7.2
 7.7
 5.4

 BLSTM+ResNetH_ACE
 9.7
 7.4
 7.8
 5.4

 BLSTM+ResNetH_ACE
 9.7
 7.3
 7.8
 5.5

 BLSTM+ResNetH_ACE
 10.0
 7.5
 8.0
 5.8

 Confusion network combination
 7.4
 7.8
 5.2

 + LSTM rescoring
 7.3
 5.2
 5.2

+ ngram rescoring + backchannel penalty

Visual Question Answering

		VQU v21	zst-dev	VQA v2 test-std				
Method	VQA v2 ta - Av AII Travia Name, V AII Travia Name, V AII Travia Name, V Quare, Tirls network (a) (-1) - - Quare, Tirls network (a) (-1) - - - Quare, Tirls network (a) (-1) - - - (1) - - - - (2) Area, Tab, V - - - - (1) - - - - - (2) Area, Tab, V - - - - - (2) Area, Tab, V - - - - - - (2) Area, Tab, V -	Other	All	Yes/no	Numb	Othe		
Prior (most common answer in training set) [14]					25.98	61.20	0.36	
LSTM Language only (blind model) [14]					44.26	67.01	31.55	27.3
Deeper LSTM Q norm, 1171 as reported in [14]					54.22	73.46	35.18	41.8
MCB [13] as reported in [14]					62.27	78.82	38.28	53,3
UPMC-LIP6 [7]					65.71	82.07	-41.06	
Adiena					67.59	82.50	44.19	59.9
LV-NUS					65.77	81.89	46.29	58.3
HDU-USYD-UNOC					68.09	84.50	45.39	59.0
Proposed model								
ResNet features 7x7, single network	62.07	79.20	39.45	52.62	62.27	79.32	39.77	52.5
Image Seatures from bettern-up attention, adaptive K , single network	65.32	81.82	44.21	55.05	65.67	\$2.20	45.90	55.3
ResNet features 7×7, ensemble	66.34	\$3.38	43.17	57.10	66.73	83.71	43.77	57.2
Image features from bottom-up attention, adaptive K, ensemble	69.87	86.08	48.99	68,80	70.34	86.60	48.64	61.1

Text

This is a supervised learning method

oversee the Hilary Clinton PERSON email and Russia GPE investigations, has been fired for violating bureau policies, Mr. Sitzek PERSON 3 I said Monday DATE Mr. Trump and his alies seized on the texts — exchanged during the 2016 DATE campaign with a former FB1 GPE lawyer, Lisa Page ---- in PERSON assailing the Russia GPE Investigation as an illegitimate "witch hunt." Mr. Strzok PERSON , who rose over 20 years DATE at the F.B.I. OPE to become one of its most experienced counterintelligence agents, was a key figure in the early months DATE of the inquiry. Along with writing the texts, Mr. Strzok PERSON was accused of sending a highly sensitive search warrant to his person F.B.I. OPE had been under immense political pressure by Mr. Trump PERSON to dismiss Mr. Strzek PERSON , who was removed last summer DATE from the staff of the special counsel, Robert S. Muellor III PERSON . The president has repeatedly denounced Mr. Strzok PERSON in posts of

Speech Synthesis (text-to-speech)

Deviin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

		VQU v21	zst-dev	VQA v2 test-std.				
Method	All	Yestro	Numb	Other	All	Yes/eo	Nunb	Other
Prior (most common answer in training sot) [14]					25.98	61.20	0.36	
LSTM Language only (blind model) [14]					44.26	67.01	31.55	27,37
Deeper LSTM Q norm, 1171 as reported in [14]					54.22	73.46	35.18	41.87
MCB [13] as reported in [14]					62.27	78.82	38.28	53,36
UPMC-LIP6 [7]					65.71	82.07	-41.06	
Adem					67.59	82.50	44.19	59.97
LV-NUS					65.77	81.89	46.29	58.30
HDU-USYD-UNOC					68.09	84.50	45.39	59.01
Proposed medel								
ResNet features 7x7, single network	62.07	79.20	39.45	52.62	62.27	79.32	39.77	52.55
Image Statures from bottom-up attention, adaptive K, single network	65.32	81.82	44.21	55.05	65.67	82.20	45.90	55.26
ResNet features 7×7, execuble	66.34	\$3.38	43.17	57.10	66.73	83.71	43.77	57.20
Image features from bottom-up attention, adaptive K, ensemble	69.87	86.08	48,99	68,90	70.34	86.60	48.64	61.15

Robot Learning via Supervised Learning

Robot Learning via Deep Reinforcement Learning

Robot Learning via Deep Reinforcement Learning - Issues

Program as Reinforcement Learning Policies

Neural Program Synthesis from Diverse Demonstration Videos

ICML 2018

Shao-Hua Sun*

Sriram Somasundaram

Joseph J. Lim

Imitation Learning via Synthesizing Programs

Execution

Environments

Demonstrations

Richard E Pattis. "Karel the robot: a gentle introduction to the art of programming." John Wiley & Sons, Inc., 1981

Program

- WHILE frontIsClear(HellKnight)
 - attack
 - moveForward
- IF thereIs(Demon)
 - moveRight

 - moveLeft
 - moveBackward

Demonstrations

Kempka et al., "Vizdoom: A doom-based ai research platform for visual reinforcement learning." in CIG, 2016

Imitation Learning with Neural Network Policy

Infer

Neural Network Policy

Predicted Execution

Initial States

Ground Truth Execution

Imitation Learning with Program Policy

Ground Truth Program

Ground Truth Execution

Experimental Results

ground truth demonstrations

Observation

Demonstrations

Neural Network Policy

move

Inferred Program

n()	
frontIsClear	
move	
E	
turnLeft	

Learn to mimic **the general tendency** of the expert **behaviors**

 Learn to capture the decision-making logics of the expert

Dweep Trivedi*

Jesse Zhang*

Shao-Hua Sun

Joseph J. Lim

Deep Reinforcement Learning

Reinforcement Learning via Synthesizing Programs

Reinforcement Learning via Synthesizing Programs

LEAPS: Learning Embeddings for IAtent Program Synthesis

Stage 1 Learn a program embedding space from randomly generated programs Goal Learn the grammar and the environment dynamics

Reconstructed Program

LEAPS: Learning Embeddings for IAtent Program Synthesis

Stage 2 Search for a task-solving program using the cross-entropy method (CEM) Goal Optimize the task performance

Decoded Program

Karel Tasks

StairClimber

TopOff

Maze

Harvester

FourCorners

CleanHouse

Qualitative Results

StairClimber

Deep RL

LEAPS

FourCorners

Deep RL

Deep RL

Maze

LEAPS

Deep RL

TopOff

LEAPS

CEM trajectory Visualization

Goal: Search for a StairClimber program in the learned program embedding space

Quantitative Results

LEAPS Zero-shot Generalization

Learning on 8 x 8

LEAPS Program Policy

StairClimber

Evaluation on 100 x 100

Experimental Results - Zero-shot Generalization

TopOff

Interpretability & Interactability

Interactive Debugging Interface

Shao-Hua Sun

LEAPS: Learning Embeddings for IAtent Program Synthesis

Stage 2 Searching for a task-solving program using the cross-entropy method

Decoded Program

LEAPS: Learning Embeddings for IAtent Program Synthesis

Stage 2 Searching for a task-solving program using the cross-entropy method

Poor credit assignment

Evaluate each candidate program solely based on the **cumulative return** of its execution trace

<u>Cannot</u> accurately attribute rewards to corresponding program parts

HPRL: Hierarchical Programmatic Reinforcement Learning

Stage 1 Learning a compressed program embedding space from randomly generated programs

Reconstructed Program

HPRL: Hierarchical Programmatic Reinforcement Learning

Stage 2 Learning a meta policy to produce a series of programs (*i.e.*, predict a series of actions) to yield a composed task-solving program

Quantitative Results - Karel Tasks

Karel-Hard Tasks

OneStroke

DoorKey

Seeder

Snake

0.8 0.6 Reward 0.4 0.2 0

Additional Experiments

Limited program distribution

Synthesize out-of-distributionally long programs

ullet

- HPRL can synthesize programs longer than the dataset programs (< 40 tokens) better than LEAPS

Poor credit assignment

Learning from episodic reward **Dense:** Reward each subprogram based on its execution trace

• The hierarchical design of HPRL allows for better credit assignment with dense rewards, facilitating the learning progress

Execute

Program

<pre>DEF run() m(WHILE c(markerPresent c) w(WHILE c(markerPresent c) w(pickMarker</pre>				
move w)				
turnRight				
move				
turnLeft				
WHILE c(markerPresent c) w(
pickMarker				
move w)				
turnLeft				
move				
turnRight w) m)				

Takeaways

Program Synthesis X Reinforcement Learning

Interpretable and Generalizable Policies

Environment

Demonstrations

Program-Guided Robot Learning

Key idea

- Represent robot behaviors using programs based on pre-defined and acquired primitive skills
- Decouple learning a skill as performing program inference and task execution

Described with formal languages

- Program Human interpretable and machine executable •
 - Structured for generalization ۲

Task Execution Program Inference

Low-Level Execution

	JUIILU	loique	
	Δ	ction.	
[-2.09531/83e-19	2./2130/35e/05		-3.454/4/15e-06
7.42993721e-06	-1.40711141e-04	-3.04253586e-04	-2.07559344e-04
8.50646247e-05	-3.45474715e-06	7.42993721e-06	-1.40711141e-04
-3.04253586e-04	-2.07559344e-04	-8.50646247e-05	1.11317030e-04
-7.03465386e-05	-2.22862221e-05	-1.11317030e-04	7.03465386e-05
-2.22862221e-05	-2.09531783e-19	2.72130735e-05	6.14480786e-22
-3.45474715e-06	7.42993721e-06	-1.40711141e-04	-3.04253586e-04
-2.07559344e-04	8.50646247e-05	-3.45474715e-06	7.42993721e-06
-1.40711141e-04	-3.04253586e-04	-2.07559344e-04	-8.50646247e-05
1.11317030e-04	-7.03465386e-05	-2.22862221e-05	-1.11317030e-04]

Joint v torque

[-2.09531783e-19	2.72130735e-05	6.14480786e-22	-3.45474715e-06
7.42993721e-06	-1.40711141e-04	-3.04253586e-04	-2.07559344e-04
8.50646247e-05	-3.45474715e-06	7.42993721e-06	-1.40711141e-04
-3.04253586e-04	-2.07559344e-04	-8.50646247e-05	1.11317030e-04
-7.03465386e-05	-2.22862221e-05	-1.11317030e-04	7.03465386e-05
-2.22862221e-05	-2.09531783e-19	2.72130735e-05	6.14480786e-22
-3.45474715e-06	7.42993721e-06	-1.40711141e-04	-3.04253586e-04
-2.07559344e-04	8.50646247e-05	-3.45474715e-06	7.42993721e-06
-1.40711141e-04	-3.04253586e-04	-2.07559344e-04	-8.50646247e-05
1.11317030e-04	-7.03465386e-05	-2.22862221e-05	-1.11317030e-04

Program Inference

Program

Machine

Policy

Primitive Skill Acquisition

Task Execution Composing Complex Skills by Learning Transition Policies $\pi_{ ext{iump}}$ $\pi_{ ext{transition}}$ Fast Learning of New π_{walk} Long-Horizon Task Target **ICLR 2019** Program Guided Agent def run(): if is_there(River) mine(Wood) idge() if agent[iron] < 3 mine(Iron) place(Iron,1,1) else: goto([4,2]) while env[Gold] > 0: mine(Gold) ICLR 2020 (Spotlight) Bootstrap Your Own Skills: Learning to Solve New Tasks with Large Language Model Guidance Skill Library Practice in Environment Update Agent Initial Skill Put 🥖 in 🛎 Pick up 🥒 👇 Service Policy Pick up 🥒 **S**LLM V(s, z) Critic Policy Pick up 🍎 $D_{\star}(\mathbf{s}, \mathbf{a})$ Name New Skil Put 🥜 in 🛎 Serve 🥖 Pick up 🥒 **G**LLM Put 🥜 in 🤭 Serve baked 🥖 Serve 🥜 Serve 🥜 S LLM Add New Skill to Librar CoRL 2023 (Oral) Integrating Planning and Deep Reinforcement Learning via Automatic Induction of Task Substructures

ICLR 2024

Shao-Hua Sun (孫紹華)

Assistant Professor at National Taiwan University shaohuas@ntu.edu.tw

Bio

I am an Assistant Professor at National Taiwan University (NTU) with a joint appointment in the Department of Electrical Engineering and the Graduate Institute of Communication Engineering. Prior to joining NTU, I recently completed my Ph.D. in Computer Science at the University of Southern California, where I worked in the Cognitive Learning for Vision and Robotics Lab (CLVR). Before that, I received my B.S. degree in Electrical Engineering from NTU. My research interests span Robot Learning, Reinforcement Learning, Program Synthesis, and Machine Learning.

Prospective students: I am looking for students interested in machine learning, robot learning, reinforcement learning, and program synthesis. Specifically, I am hiring M.S. and Ph.D. students admitted to the Data Science and Smart Networking Group at the Graduate Institute of Communication Engineering (電信所丙組/資料科學與智慧網路組) or the Data Science Degree Program (資料科學學位學程) at NTU. Also, I am seeking undergraduate students, research assistants, and visitors with different experience levels. If you are interested in joining my group, please check out this slide and fill in the Google form.

Shao-Hua Sun @shaohua0116

Assistant Professor @ National Taiwan University (NTU) | CS Ph.D. @USC | Robot Learning, Reinforcement Learning, Program Synthesis | 台大電機系助理教授

868 Following **2,987** Followers

Execute

Program

<pre>DEF run() m(WHILE c(markerPresent c) w(WHILE c(markerPresent c)</pre>	w (
pickMarker	
move w)	
turnRight	
move	
turnLeft	
WHILE c(markerPresent c)	w (
pickMarker	
move w)	
turnLeft	
move	
turnRight w) m)	

Thank You

Questions?

Environment

Demonstrations

